期刊文献+

水平-竖直管道内水流冲击滞留气团的三维数值模拟研究

Three-dimensional Numerical Simulation of Water Impacting Entrapped Air Pocket in Horizontal-vertical Pipeline
下载PDF
导出
摘要 水平-竖直管道内水流冲击滞留气团现象复杂且可能产生异常压力波动,本文采用三维CFD方法对其水气耦合作用过程进行建模和模拟。在考虑气团压缩性基础上,考虑了水体弹性,采用两种湍流模型(Standard k-ε、RNG k-ε)进行模拟研究,并将三维计算结果与实验结果进行了对比分析,研究气团长度、管壁粗糙度等参数的动态变化过程。结果表明:所采用的三维CFD模型能够较准确地模拟起伏管道内水流冲击滞留气团瞬变过程中水气形态变化和压力波动;系统最大压力随气团长度减小而增大,随入口压力增大而增大,且增值远大于系统入口压力增值;RNG k-ε湍流模型适用于长气团以及短气团、高压力入口条件,Standard k-ε湍流模型适用于短气团、低压力入口条件;管壁粗糙度对瞬态压力的影响与气团长度有关,不同压力峰值对管壁粗糙度的敏感性不同。 The phenomenon of water flow impacting and entrapped air mass in horizontal-vertical pipeline is complex and may produce abnormal pressure fluctuations.A three-dimensional CFD method is used to model and simulate the water-air coupling process.By considering the compressibility of air mass and the elasticity of water body,two turbulence models(Standard k-ε,RNG k-ε)are used to conduct the simulation study and the simulation results are compared with the experimental results to study the dynamic changes of the length of air mass and the pipe wall roughness.The results show that,(a)the three-dimensional CFD model can accurately simulate the changes of water vapor shape and pressure fluctuations during the transient process of the impingement of retained air mass in the undulating pipeline;(b)the maximum pressure of the system increases with the decrease of air mass length and increases with the increase of inlet pressure,and the increase of maximum pressure is much greater than the increase of system inlet pressure;(c)the RNG k-εturbulence model is suitable for the conditions of long or short air masses,and high inlet pressure,and the Standard k-εturbulence model is suitable for the conditions of short air masses and low inlet pressure;and(d)the effect of pipe wall roughness on transient pressure is related to the length of air pocket,and different pressure peaks have different sensitivities to pipe wall roughness.
作者 卢坤铭 LU Kunming(China Three Gorges Construction Engineering Corporation,Chengdu 610041,Sichuan,China)
出处 《水力发电》 CAS 2021年第12期60-65,共6页 Water Power
关键词 瞬变流 输水管道 水平-竖直管道 CFD数值模拟 水气耦合 滞留气团 transient flow water pipeline horizontal-vertical pipeline CFD numerical simulation water-gas coupling entrapped air pocket
  • 相关文献

参考文献5

二级参考文献26

  • 1胡建永,张健,索丽生.长距离输水工程中空气阀的进排气特性研究[J].水利学报,2007,38(S1):340-345. 被引量:34
  • 2刘德有,索丽生.水流冲击管道内滞留气团的刚性数学模型[J].水科学进展,2004,15(6):717-722. 被引量:12
  • 3刘德有,索丽生.变特性长管道内水流冲击气团的刚性数学模型[J].水动力学研究与进展(A辑),2005,20(1):44-49. 被引量:20
  • 4CABRERA E,ABREU J,PEREZ R,and VELA A.Influence of liquid length variation in hydraulic transients[J].J. Hydraulic Eng. of ASCE,1992,118(12):1639-1650.
  • 5WYLIE E B, STREETER V L with SUO Li-sheng.Fluid Transients in Systems[M].Englewood Cliffs,NJ,Prentice Hall,1993.208-210.
  • 6ZHOU F,HICKS F E and STEFFLER P M.Transient flow in a rapidly filling horizontal pipe containing trapped air[J].J. Hydraulic Eng. of ASCE,2002,128(6):625-634.
  • 7Wylie E B, Streeter V L, Suo Lisheng. Fluid Transients in Systems[M]. Englewood Cliffs, NJ, Prentice Hall, 1993.208-210.
  • 8Zhou F, Hicks F E, Steffler P M. Transient Flow in a Rapidly Filling Horizontal Pipe Containing Trapped Air[J]. J Hydraulic Eng of ASCE, 2002, 128(6):625-634.
  • 9Cabrera E, Abreu J, Perez R, et al. Influence of Liquid Length Variation in Hydraulic Transients[J]. J Hydraulic Eng of ASCE, 1992, 118(12):1639-1650.
  • 10汤寒松.水激波管空穴现象数值模拟[J].水动力学研究与进展(A辑),1997,12(2):175-180. 被引量:2

共引文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部