期刊文献+

基于深度迁移学习的饮食图像识别研究

Research on recognition of dietary images based on deep transfer learning
下载PDF
导出
摘要 卷积神经网络(CNN)应用于图像识别具有很大优势,但是需要足够深的网络和大量标签完善的数据集才能发挥其优越性。实际应用中,往往需要应对的是质量差和大小不一的数据集,且受硬件设备限制。为了提高图像识别效率和精度,提出一种基于深度卷积神经网络和迁移学习的识别算法。该算法首先对图像预处理和数据增强,后迁移大样本提取出的特征信息用于CNN特征提取,再接入微调网络对数据集再训练。实验结果显示,本文算法对饮食识别的精度和时间性能均有显著的提高,精确度最高可达98%以上,精度提升最高可达10%以上,时间性能提升幅度最高可达110%。 Convolutional neural network(CNN)has tremendous advantages when applied to image recognition,but it requires a deep network and a large number of well-labeled datasets to exploit its superiority. In practical daily life,it often needs to deal with datasets with bad quality and inconsistent size and limited by hardware devices. In order to improve the efficiency and accuracy of image recognition,a recognition algorithm based on deep convolutional neural networks and transfer learning is proposed. The image is pre-processed and augmented first,then the feature information extracted from large samples is transferred for CNN feature extraction. Finally the fine-tuned network is accessed to target datasets. The experimental results indicate that the algorithm has a significant improvement in both accuracy and time performance for diet image recognition,with the accuracy up to more than98%,precision improvement up to more than10%,and time performance improvement up to more than110%.
作者 王策仁 彭亚雄 陆安江 WANG Ceren;PENG Yaxiong;LU Anjiang(Collage of Big Data and Information Engineering,Guizhou University,Guiyang 550025,China)
出处 《智能计算机与应用》 2021年第9期113-118,122,共7页 Intelligent Computer and Applications
基金 贵州省科技成果转化项目([2017]4856)。
关键词 深度学习 图像识别 卷积神经网络 迁移学习 微调网络 特征提取 deep learning image recognition Convolutional Neural Networks(CNNs) transfer learning fine-tuning networks feature extraction
  • 相关文献

参考文献3

二级参考文献69

  • 1Lowe D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60 (2) 91 110.
  • 2Dalai N, Triggs B. Histograms of oriented gradients for human detection[C]//Computer Vision and Pattern Recognition (CVPR), IEEE Computer Society Conference on. San Diego, USA: IEEE, 2005, 1 886-893.
  • 3Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786) : 504-507.
  • 4Hubel D H, Wiesel T N. Receptive fields, binocular interaction and functional architecture in the catrs visual cortex[J]. The Journal of Physiology, 1962, 160(1): 106-154.
  • 5Fukushima K, Miyake S. Neocognitron: A new algorithm for pattern recognition tolerant of deformations and shifts in posi- tion[J]. Pattern Recognition, 1982, 15(6): 455-469.
  • 6Ruck D W, Rogers S K, Kabrisky M. Feature selection using a multilayer perceptron[J]. Journal of Neural Network Com- puting, 1990, 2(2): 40-48.
  • 7Rumelhart D E, Hinton G E, Williams R J. Learning representations by back-propagating errors[J]. Nature, 1986,3231 533 538.
  • 8LeCun Y, Denker J S, Henderson D, et al. Handwritten digit recognition with a back-propagation network[C]//Advances in Neural Information Processing Systems. Colorado, USA Is. n. ], 1990: 396-404.
  • 9LeCun Y, Cortes C. MNIST handwritten digit database[EB/OL], http//yann, lecun, com/exdb/mnist, 2010.
  • 10Waibe[ A, Hanazawa T, Hinton G, et al. Phoneme recognition using time-delay neural networks[J]. Acoustics, Speech and Signal Processing, IEEF. Transactions on, 1989, 37(3): 328-339.

共引文献537

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部