期刊文献+

基于特征加权的SFO-K_means用电行为研究 被引量:2

Research on electricity consumption behavior based on feature weighted SFO-K_means
下载PDF
导出
摘要 在传统的K_means算法中,初始聚类中心大多采用任意选取或者凭借经验,使算法的准确性易受选取结果的影响。针对这些不足,提出了利用剑鱼算法全局寻优特性,来改进K_means初始聚类中心的选取。UCI数据对比显示,改进算法在平均迭代次数和准确率方面优于传统K_means算法。在用户用电行为分析上,利用提取的5个降维特征指标,对每半小时采样一次的高维日负荷曲线进行降维处理;引入Critic法来确定指标的权重系数,并利用皮尔逊相关系数与熵权,分别衡量指标之间的冲突性与指标内部的对比强度;采用特征加权的SFO-K_means算法进行聚类分析。算例结果表明,该法在聚类质量上有一定的优越性,聚类结果能反应出用户的用电行为习惯。 In the traditional K_means algorithm,the initial clustering centers are mostly selected arbitrarily or with experience,and the accuracy of the algorithm is easily affected by the selection results. In view of these shortcomings,this paper proposes to improve the selection of K_means initial clustering centers by using the global optimization characteristics of the Sailfish Optimizer(SFO). The comparison of UCI data shows that the improved algorithm is better than the traditional K_means algorithm in the average number of iterations and accuracy. In the analysis of users’ electricity consumption behavior,firstly,the extracted five dimensionality reduction characteristic indexes are used to reduce the dimensionality of the high-dimensional daily load curve which is sampled every half hour.Then the Critic method is introduced to determine the weight coefficient of the indexes,and the Pearson correlation coefficient and entropy weight are used to measure the conflict between the indexes and the contrast strength within the indexes.
作者 唐辉 刘晓波 韩祥民 邱知 徐邦贤 TANG Hui;LIU XiaoBo;HAN XiangMin;QIU Zhi;XU Bangxian(College of Electrical Engineering,Guizhou University,Guiyang 550025,China)
出处 《智能计算机与应用》 2021年第9期165-169,共5页 Intelligent Computer and Applications
基金 国家自然科学基金(51867005)。
关键词 用电行为 K_means 剑鱼算法 SFO-K_means Critic法 熵权 electricity consumption behavior Kmeans SFO algorithm SFO-Kmeans Critic Entropy weight
  • 相关文献

参考文献8

二级参考文献95

共引文献478

同被引文献26

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部