期刊文献+

冲击作用下拱式振动能采集器的非线性力-电响应分析

Investigation of Nonlinear Electro-mechanical Responses of Vibration Energy Harvesters with Arcuation under Impact Loading
下载PDF
导出
摘要 以拱式振动能采集器为研究对象,采用ANSYS软件建立其有限元模型,研究在冲击荷载作用下拱式振动能采集器的非线性力-电响应,分别讨论荷载幅值、扭转约束、负载电阻与结构几何等因素对采集器输出电压和电功率的影响。结果表明,在冲击荷载较大情况下,拱式振动能采集器发生非线性动力跳跃变形,此时采集器产生电能显著增大,体现出非线性条件下拱式振动能采集器的优势。在不同负载电阻条件下拱式振动能采集器有效输出电压随电阻阻值增大而增大,并最终趋于开路电压,而电能输出功率则随电阻阻值增大先升高后降低。特别地,当拱的长细比>200时,采集器的有效输出电压随拱长细比的增大而显著增大。 The nonlinear electro-mechanical responses of vibration energy harvesters with arcuation under impact loading is studied in this paper. By conducting the nonlinear transient dynamic analysis with ANSYS software, the effects of step load amplitude, torsional restraint, external resistance and structural geometry on the output voltage and output power of the energy harvester are investigated comprehensively. It is found when the applied step load is sufficiently large, the dynamic snap-through vibration happens to the energy harvester, consequently, leads to higher output of voltage, which shows the advantage of the arched energy harvester with highly nonlinear structural behavior. It is also found with the increasing of the resistance value, the effective output voltage of the energy harvester increases and then tends to open-circuit voltage, while the output power increases and the resistance decreases. In particular, when the slenderness of the arch is higher than 200, the output voltage of the energy harvester significantly increases with the slenderness increases.
作者 杨智诚 刘爱荣 何运成 傅继阳 YANG Zhicheng;LIU Airong;HE Yuncheng;FU Jiyang(College of Urban and Rural Construction,Zhongkai University of Agriculture and Engineering,Guangzhou 510225,China;Wind and Vibration Engineering Research Center,Guangzhou University,Guangzhou 510006,China)
出处 《实验室研究与探索》 CAS 北大核心 2021年第10期34-37,43,共5页 Research and Exploration In Laboratory
基金 国家杰出青年科学基金项目(51925802) 国家自然科学基金面上项目(11972123,51878188) 广东省科技计划项目(2020A1414010319)。
关键词 非线性振动 冲击 能量采集 arch nonlinear vibration impact energy harvesting
  • 相关文献

参考文献2

二级参考文献32

  • 1SAADON S, SIDEK O. A review of vibration-basedMEMS piezoelectric energy harvesters [ J ]. Energy Con- version and Management, 2011, 52 ( 1 ) :500-504.
  • 2TORAH R, GLYNNE-JONES P, TUDOR M, et al. Self- powered autonomous wireless sensor node using vibration energy harvesting [ J ]. Measurement Science and Tech- nology, 2008, 19(12) :125202.
  • 3ROUNDY S, WRIGHT P K. A piezoelectric vibration based generator for wireless electronics [ J ]. Smart Mate- rials and Structures, 2004, 13 (5) : 1131-1142.
  • 4ERTURK A, INMAN D J. On mechanical modeling of cantilevered piezoelectric vibration energy harvesters [ J ]. Journal of Intelligent Material Systems and Structures, 2008, 19(11) :1311-1325.
  • 5RUPP C J, EVGRAFOV A, MAUTE K, et al. Design of piezoelectric energy harvesting systems: A topology optimization approach based on muhilayer plates and shells[ J]. Journal of Intelligent Material Systems and Structures, 2009, 20(16) :1923-1939.
  • 6HARNE R L, WANG K W. A review of the recent re- search on vibration energy harvesting via bistable sys- tems[ J]. Smart Materials and Structures. 2013, 22 (2) :1330-1334.
  • 7SEBALD G, KUWANO H, GUYOMAR D, et al. Simu- lation of a Duffing oscillator for broadband piezoelectric energy harvesting [ J ]. Smart Materials and Structures, 2011,20(7) :075022.
  • 8KENFACK A, SINGH K P. Stochastic resonance in cou- pled underdamped bistable systems [ J ]. Physical Review E, 2010, 82(4):689-708.
  • 9MANN B P, OWENS B A. Investigations of a nonlinear energy harvester with s bistable potential well [ J ]. Jour- nal of Sound and Vibration,2010, 329 (9) : 1215-1226.
  • 10STANTON S C, OWENS B A M, MANN B P. Harmonic balance analysis of the bistable piezoelectric inertial gen- erator[Jl. Journal of Sound and Vibration, 2012, 331 (15) :3617-3627.

共引文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部