期刊文献+

An novel energy dissipator with self-recovery capability after deformation for structurally energy-dissipating rock-shed

下载PDF
导出
摘要 Theperformanceof a structurally dissipating rock-shed(SDR)depends largely onthecapacityofitsenergy dissipators.At present,mostenergy dissipatorsare made of metals,which dissipateenergy by unrecoverable plastic deformation.Therefore,they are not able to recover their energy-dissipation capacity after deformation under rockfall impact.However,a rockfall usually disintegrates into pieces when it rolls down from a higher position and results in multiple rockfall impacts.An energy dissipator with self-recovery capability is therefore more suitable for ensuring the safety of SDRs.Replacing metal with polyurethane(a hyperelastic material with remarkable self-recovery capability)can provide self-recovery capability for energy dissipators,making them more suitable for resisting multiple rockfall impacts.In this work,polyurethane was manufactured into twotypes ofenergy dissipators:cylindrical and cubical.Full-scale falling rock impact testsand dynamic numerical simulationswereconducted to study the mechanical response of the energy dissipators.In addition,in order to ensure the accuracy of the simulation,the dynamic mechanical properties of the polyurethanewere tested and its dynamic constitutive model was established.The experimental and simulation tests have clarified the advantages of the polyurethane energy dissipator.We also summarized the practical considerations in the design of energy dissipators.
出处 《Journal of Mountain Science》 SCIE CSCD 2021年第11期3058-3068,共11页 山地科学学报(英文)
基金 The research reported in this manuscript was funded by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA20030301) the International Partnership Program of the Chinese Academy of Sciences(Grant No.131551KYSB20180042) “Belt&Road”international cooperation team for the“Light of West”program of CAS(Su Lijun),Sichuan Science and Technology Program(Grant No.2021YJ0040) CAS“Light of West China”Program(Grant No.E0R2160).
  • 相关文献

参考文献6

二级参考文献41

  • 1何思明,吴永,杨雪莲.滚石坡面冲击回弹规律研究[J].岩石力学与工程学报,2008,27(S1):2793-2798. 被引量:43
  • 2何思明,李新坡,吴永.滚石冲击荷载作用下土体屈服特性研究[J].岩石力学与工程学报,2008,27(S1):2973-2977. 被引量:35
  • 3张路青,杨志法.公路沿线遭遇滚石的风险分析——案例研究[J].岩石力学与工程学报,2004,23(21):3700-3708. 被引量:31
  • 4张路青,杨志法,许兵.滚石与滚石灾害[J].工程地质学报,2004,12(3):225-231. 被引量:118
  • 5辛亚军,王焕定,程树良.新型钢铅组合耗能器试验研究[J].工程力学,2007,24(3):126-130. 被引量:19
  • 6Song B, Chen W, Ge Y, et al. Dynamic and quasi-static compressive response of porcine muscle[J]. Journal of Bi- omechanics, 2007,40(13) : 2999-3005.
  • 7Sligtenhorst V C, Cronin D S, Brodland G W. High strain rate compressive properties of bovine muscle tissue de- termined using a split Hopkinson bar apparatus[J]. Journal of Biomechanics, 2006,39(10) :1852-1858.
  • 8Van Loocke M, Lyons C G, Simms C K. Viscoelastic properties of passive skeletal muscle in compression.. Stress- relaxation behaviour and constitutive modelling[J]. Journal of Biomechanics, 2008,41(7) :1555-1566.
  • 9Humphrey J D, Strumpf R K, Yin F C P. Determination of a constitutive relation for passive myocardium[J]. Journal of Biomechanical Engineering, 1990,112:333-346.
  • 10Gielen A W, Oomens C W, Bovendeerd P H, et al. A finite element approach for skeletal muscle using a distribu- ted moment model of contraetion[J]. Computer Methods in Biomechanics : Biomedical Engineering, 2000,3 (3): 231-244.

共引文献64

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部