摘要
研究了一类具有凹凸非线性项的Klein-Gordon-Maxwell系统解的多重性.当凸项在无穷远处满足更弱的超线性增长条件且在位势函数是变号的情形下,利用变分方法获得了系统解的多重性结果.推广和完善了相关问题的已有结果.
In this paper,the multiplicity of solutions for a class of Klein-Gordon-Maxwell system has been established with concave-convex nonlinearities.When the convex terms satisfies weaker superlinear growth at infinity and the potential is sign-changing,the multiplicity result of nontrivial solutions for the system are obtained via variational methods.Our results generalize and improve the recent result in the literature.
作者
段誉
孙歆
安育成
DUAN Yu;SUN Xin;AN Yucheng(College of Science, Guizhou University of Engineering Science, Bijie Guizhou 551700, China)
出处
《西南师范大学学报(自然科学版)》
CAS
2021年第12期13-19,共7页
Journal of Southwest China Normal University(Natural Science Edition)
基金
国家自然科学基金项目(11661021)
贵州省普通高等学校科技拔尖人才项目(黔教合KY字[2019]065)
贵州省教育厅青年科技人才成长项目(KY[2020]144)
毕节市自然科学基金项目(毕科联合字G[2019]11号).