期刊文献+

基于QRNN-GARCH-POT模型沪深指数收益率风险度量的研究 被引量:3

Research on Risk Measurement of Shanghai and Shenzhen Index Returns Based on QRNN-GARCH-POT Model
原文传递
导出
摘要 本文以沪市和深市综合指数收益率为研究对象.首先,考虑到收益率序列存在波动聚集性、非线性以及非对称等特征,因此本文一方面利用了GARCH模型在准确刻画波动聚集性方面的优势,另一方面引入神经网络分位数回归(QRNN)模型来解决非线性和非对称方面的问题,建立了QRNN-GARCH模型对收益率风险特征进行度量.但QRNN-GARCH模型对收益率序列极端尾部数据处理能力不足,为此用极值理论的POT方法对此模型进行改进,构建了QRNN-GARCH-POT模型,将其应用于极端VaR风险测度.此外利用失败率、似然比检验与相对误差率,对比QRNN-GARCH-POT模型与其他模型在VaR风险测度中的表现.结果表明:第一,基于QRNN-GARCH模型的VaR风险测度取得了比GARCH模型更好的效果,仅是极端(99%)VaR风险测度精度不高.第二,QRNN-GARCH-POT模型改善了极端VaR风险测度效果. The Shanghai and Shenzhen comprehensive index returns are taken as the research object.Firstly,with volatility clustering,nonlinear and asymmetric characteristics existing in return sequence,this article uses the GARCH model to describe volatility clustering and introduces quantile regression neural network(QRNN)model to solve the nonlinear and asymmetric problems.The QRNN-GARCH model is set up to measure characteristics of return risk.But in view of the insufficient processing capacity of the QRNN-GARCH model for the extreme tail data of return rate series,the POT method of the extreme value theory is used to improve the model,and the QRNN-GARCH-POT model is set up and applied to measure the extreme VaR risk.In addition,the failure rate,likelihood ratio test and relative error rate are used to compare the performance of QRNN-GARCH-POT model and other models in VaR risk measurement.The results show that the VaR risk measure based on the QRNN-GARCH model achieves a better effect than the GARCH model,the extreme(99%)VaR risk measure has only low precision.The QRNN-GARCH-POT model also improves the effect of extreme VaR risk measure.
作者 耿文静 王星惠 汪正飞 GENG Wen-jing;WANG Xing-hui;WANG Zheng-fei(School of Economics,Anhui University,Hefei 230601,China)
出处 《数理统计与管理》 CSSCI 北大核心 2021年第6期1127-1140,共14页 Journal of Applied Statistics and Management
基金 国家自然科学基金项目(11701005) 中国博士后科学基金面上资助(2019M662146)。
关键词 神经网络 分位数回归 POT方法 QRNN-GARCH-POT模型 neural networks quantile regression POT model:QRNN-GARCH-POT model
  • 相关文献

参考文献15

二级参考文献156

共引文献333

同被引文献32

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部