期刊文献+

基于相似用户好奇心的多样性推荐方法 被引量:3

Diversified Recommendation Method Based on Similar Users’Curiosity
下载PDF
导出
摘要 推荐技术已经成为信息过载时代提供个性化服务的关键技术。由于推荐结果的多样性可以提升推荐效果,多样性推荐方法开始备受关注。针对现有基于朋友好奇心的多样性推荐方法中,诸如朋友、信任关系等难以获取及比较稀疏的问题,提出了基于相似用户好奇心的多样性推荐方法(SUC)。分析用户的真实评分,计算相似用户集;采用协同过滤方法,计算用户的预测评分;分析用户的真实评分和预测评分,计算用户的好奇心评分;融合预测评分和好奇心评分,计算用户的项目推荐列表。SUC方法不需要额外的用户关系信息,更具普适性。在五个真实数据集上的实验表明,与基准方法相比,SUC方法不仅提高了推荐多样性,同时也提升了推荐准确率、召回率和覆盖率。 Recommendation technology has become the key technology to provide personalized services in the era of information overload.Since the diversity of recommendation results can improve the recommendation effect,the diversified recommendation method has attracted researcher’s attention.It is difficult to obtain the relationships between users,such as friends and trust,which is used in the existing method based on the curiosity of friends.So,this paper proposes a diver-sified recommendation method based on Similar Users’Curiosity(SUC).First,it analyzes the users’real ratings and calculates the set of similar users.Second,it calculates the users’predicted ratings based on the collaborative filtering method.Then,it calculates the users’curiosity ratings by analyzing the users’real ratings and predicted ratings.Finally,it integrates the predicted ratings and curiosity ratings to calculate the users’item recommendation lists.The proposed method is more useful because it does not require additional information.Experiments on five real data sets show that compared with the benchmark methods,the SUC method not only improves the diversity of recommendation,but also improves the accuracy,recall and coverage of recommendation.
作者 田维安 陈红梅 周丽华 TIAN Wei’an;CHEN Hongmei;ZHOU Lihua(School of Information Science and Engineering,Yunnan University,Kunming 650504,China)
出处 《计算机工程与应用》 CSCD 北大核心 2021年第23期113-121,共9页 Computer Engineering and Applications
基金 国家自然科学基金(61662086,61762090,61966036)。
关键词 推荐系统 协同过滤 相似度 好奇心 多样性 recommendation system collaborative filtering similarity curiosity diversity
  • 相关文献

参考文献5

二级参考文献17

  • 1李涛,王建东,叶飞跃,冯新宇,张有东.一种基于用户聚类的协同过滤推荐算法[J].系统工程与电子技术,2007,29(7):1178-1182. 被引量:70
  • 2Zhang M, Hurley N. Avoiding monotony.. Improving the di- versity of recommendation lists[C]//Proc of the 2008 ACM Conference on Recommender Systems, 200B : 123-130.
  • 3Lacerda A,Ziviani N. Building user profiles to improve user experience in recommender systems [C]//Proc of the 6th ACM International Conference on Web Search and Data Min- ing, 2013 : 759-764.
  • 4Park Y J. The adaptive clustering method for the long tail problem of recommender systems[J]. IEEE Transactions on Knowledge and Data Engineering,2013,25(8) :1904-1915.
  • 5Park Y J,Tuzhilin A. The long tail of recommender systems and how to leverage it[C]//Proc of the 2008 ACM Confer- ence on Recommender Systems, 2008 : 11-18.
  • 6Lin K-L. hem-triggered recommendation[D]. Taibei: Na- tional Taiwan University, 2005.
  • 7Adomavicius G, Kwon Y. Maximizing aggregate recommen- dation diversity: A graph-theoretic approach [ C]// Proc of Workshop on Novelty Anddiversity in Recommender Sys- tems, 2011:3-10.
  • 8Adomavicius G,Kwon Y. Improving aggregate recommenda- tion diversity using ranking-based techniques[J]. IEEE Transactions on Knowledge and Data Engineering, 2012,24 (5) :896-911.
  • 9张富国,徐升华.基于信任的电子商务推荐多样性研究[J].情报学报,2010,29(2):350-355. 被引量:25
  • 10王晟,王子琪,张铭.个性化微博推荐算法[J].计算机科学与探索,2012,6(10):895-902. 被引量:22

共引文献65

同被引文献27

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部