期刊文献+

融合知识表示学习的双向注意力问答模型 被引量:4

Bidirectional Attention Question Answering Model Combining Knowledge Representation Learning
下载PDF
导出
摘要 知识图谱问答是自然语言处理领域的研究热点之一,近年来受到广泛的关注。知识图谱问答面临需要结合多条三元组进行推理的多跳问题以及知识图谱不完整等挑战,为解决这些问题,提出了一种融合知识表示学习的双向注意力模型(Bidirectional Attention model combining Knowledge Representation,KR-BAT)。引入知识表示学习以提高模型全局建模能力,应对知识图谱不完整的情况;使用双向注意力模型捕捉候选答案和问题间丰富的交互信息,经过分析推理给出答案。在MetaQA数据集上进行了实验,对比VRN、KV-MemNN、GraftNet等基准模型,在完整知识图谱上达到了非常有竞争力的性能,在不完整知识图谱上大幅度优于基准模型。 Question Answering over Knowledge Graph(KGQA)is one of the research hotspots in the field of natural language processing and has received extensive attention in recent years.KGQA faces challenges such as multi-hop problems that need to combine multiple triples for reasoning and incomplete knowledge graphs.To solve these problems,a KR-BAT model which combines knowledge representation and bidirectional attention mechanism is proposed.It introduces knowledge representation learning to improve the global modeling ability and deals with incomplete knowledge graph;the bidirectional attention model captures the rich interactive information between candidate answers and questions,and give answers after analysis and reasoning.Experiments are conducted on the MetaQA dataset and compared with baseline models such as VRN,KV-MemNN,GraftNet.Results show that KR-BAT achieves very competitive performance on the complete knowledge graph,and is further improved than the baseline model on the incomplete knowledge graph.
作者 卢琪 潘志松 谢钧 LU Qi;PAN Zhisong;XIE Jun(College of Command&Control Engineering,Army Engineering University of PLA,Nanjing 210000,China)
出处 《计算机工程与应用》 CSCD 北大核心 2021年第23期171-177,共7页 Computer Engineering and Applications
基金 2017年国家重点研发计划“网络空间安全”重点专项(2017YFB0802800)。
关键词 知识图谱 智能问答 知识表示 注意力 knowledge graph intelligent question answering knowledge representation attention
  • 相关文献

参考文献2

二级参考文献88

  • 1Miller G A. WordNet: A lexical database for English [J]. Communications of the ACM, 1995, 38(11): 39-41.
  • 2Bollacker K, Evans C, Paritosh P, et al. Freebase: A collaboratively created graph database for structuring human knowledge [C] //Proe of KDD. New York: ACM, 2008: 1247-1250.
  • 3Miller E. An introduction to the resource description framework [J]. Bulletin of the American Society for Information Science and Technology, 1998, 25(1): 15-19.
  • 4Bengio Y. Learning deep architectures for AI [J]. Foundations and Trends in Machine Learning, 2099, 2 (1) 1-127.
  • 5Bengio Y, Courville A, Vincent P. Representation learning: A review and new perspectives [J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2013, 35(8): 1798-1828.
  • 6Turian J, Ratinov L, Bengio Y. Word representations: A simple and general method for semi-supervised learning [C]// Proc of ACL. Stroudsburg, PA: ACL, 2010:384-394.
  • 7Manning C D, Raghavan P, Schutze H. Introduction to Information Retrieval [M]. Cambridge, UK: Cambridge University Press, 2008.
  • 8Mikolov T, Sutskever I, Chen K, et al. Distributed representations of words and phrases and their eompositionality [C] //Proe of NIPS. Cambridge, MA: MIT Press, 2013:3111-3119.
  • 9Zhao Y, Liu Z, Sun M. Phrase type sensitive tensor indexing model for semantic composition [C] //Proc of AAAI. Menlo Park, CA: AAAI, 2015: 2195-2202.
  • 10Zhao Y, Liu Z, Sun M. Representation learning for measuring entity relatedness with rich information [C] //Proc of IJCAI. San Francisco, CA: Morgan Kaufmann, 2015: 1412-1418.

共引文献317

同被引文献15

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部