期刊文献+

结合集成学习的序贯三支情感分类方法研究 被引量:7

Sequential Three-Way Sentiment Classification Combined with Ensemble Learning
下载PDF
导出
摘要 情感分类一直是自然语言处理任务中重要的研究热点,并在电子商务评论、热点论坛、公共舆论等众多场景中广泛应用。如何提高情感分类模型性能仍是情感分析领域的重点研究问题。集成学习是通过联合若干分类器达到提高模型总体效果的有效方法。基于粒计算和三支决策思想,并结合集成学习的优势,构建了结合集成学习的多粒度序贯三支决策模型。通过N-gram语言模型构建文本多粒度结构,形成序贯三支情感分类基础;在每一粒度下,集成三个分类算法以提高在该粒度下的分类效果;通过4个数据集对所提出方法进行了实验验证。结果证明,该方法不仅可以提高整体分类效果,还可以降低分类成本。 Sentiment classification has always been an important research hotspot in natural language processing tasks,and is widely used in many scenarios such as e-commerce reviews,hotspot forums and public opinion.How to improve the performance of sentiment classification model is still a key research problem in the field of sentiment analysis.Ensemble learning is an effective method to improve the overall performance of the model by combining several classifiers.Based on the ideas of granular computing and three-way decisions,as well as the advantages of ensemble learning,this paper constructs a multi-granularity sequential three-way decision model combined with ensemble learning.Firstly,it builds a text multi-granularity structure through the N-gram language model to form the basis of sequential three-way sentiment classification.Secondly,three classification algorithms are designed to improve the classification performance at each granularity.Finally,it verifies the model through four datasets.The results demonstrate the proposed method can not only improve the overall classification performance,but also reduce the classification cost.
作者 王琴 刘盾 WANG Qin;LIU Dun(School of Economics and Management,Southwest Jiaotong University,Chengdu 610031,China)
出处 《计算机工程与应用》 CSCD 北大核心 2021年第23期211-218,共8页 Computer Engineering and Applications
基金 国家自然科学基金(61876157,71571148) 计算智能重庆市重点实验室开放基金(2020FF03) 西南交通大学杨华学者A类计划。
关键词 情感分类 序贯三支决策 多粒度 集成学习 sentiment classification sequential three-way decisions multi-granularity ensemble learning
  • 相关文献

参考文献4

二级参考文献48

  • 1徐琳宏,林鸿飞,杨志豪.基于语义理解的文本倾向性识别机制[J].中文信息学报,2007,21(1):96-100. 被引量:123
  • 2赵文清,朱永利,高伟华.一个基于决策粗糙集理论的信息过滤模型[J].计算机工程与应用,2007,43(7):185-187. 被引量:15
  • 3Pawlak Z. Rough sets [J].International Journal of Computer and Information Sciences, 1982,11:341-356.
  • 4Yao Y Y. Three-way decision: an interpretation of rules in rough set theory[J].LNAI,2009(5589):642- 649.
  • 5Yao Y Y. Three-way decisions with probabilistic rough sets [J]. Information Sciences, 2010,180:341-353.
  • 6Yao Y Y. Two semantic issues in a probabilistie rough set model [J]. Fundamenta Informatieae, Manuscript, 2009.
  • 7Pawlak Z,Wong S K M, Ziarko W. Rough sets: probabilistic versus deterministic approach[J].Inter. Journal of Man-Machine Studies, 1988,29 : 81-95.
  • 8Yao Y Y,Wong S K M. A decision theoretic framework for ap proximating concepts[J].Inter. Journal of Man-machine Stu dies, 1992,37 : 793-809.
  • 9Yao Y Y. Decision-theoretic rough set models [J]. Locture Notes in Artificial Intelligence,2007(4481) : 1-12.
  • 10Ziarko W. Variable precision rough set model [J]. Journal of Computer and System Sciences, 1993,46 : 39-59.

共引文献62

同被引文献91

引证文献7

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部