期刊文献+

基于模型预测控制的无人机时空协同航迹规划 被引量:2

Space-Time Cooperative Path Planning for Multi-UAV Using Model Predictive Control
下载PDF
导出
摘要 为了求解同时实现空间协同和时间协同的多无人机时空协同问题,提出了基于分布式模型预测控制的多无人机在线协同航迹规划的方法。建立了由MPC(Model Predictive Control,)控制器、空间协同模块和时间协同模块组成的多无人机分布式时空协同航迹规划框架结构。MPC将时空协同问题转化为滚动优化问题,优先级的方法实现了空间协同和时间协同的解耦,同时改进了碰撞冲突消解规则,并设计了时间冲突消解规则,解决了分布式时空协同问题的动作一致性问题。仿真实验表明,该方法可以有效地实现多无人时空协同航迹规划。 To solve the problem of simultaneous space and time coordination of multiple UAVs,an online cooperative path planning method based on distributed model predictive control for multi-UAV is proposed.A distributed space-time cooperative path planning framework composed of MPC controller,space cooperation module and time cooperation module is established.MPC transforms the space-time coordination problem into a rolling optimization problem.Priority-based decoupling strategy is used to decouple the space cooperation and time cooperation.The collision conflict resolution rules are improved and time conflict resolution rules are designed.The consistency of decentralized time-space coordination problem is solved.Simulation results show the proposed algorithm can effectively realize space coordination and time coordinationfor multi-UAV.
作者 顾海艳 陈亮 王多点 GU Haiyan;CHEN Liang;WANG Duodian(Department of Computer Information and Cyber Security,Jiangsu Police Institute,Nanjing 210031,China;Field Engineering College,Army Engineering University of PLA,Nanjing 210007,China;Automobile NCO Academy,Army Military Transportation University of PLA,Bengbu,Anhui 233011,China;Army Research Institute of PLA,Beijing 100089,China)
出处 《计算机工程与应用》 CSCD 北大核心 2021年第23期270-279,共10页 Computer Engineering and Applications
关键词 模型预测控制 多无人机 协同航迹规划 冲突消解 Model Predict Control(MPC) multiple unmanned aerial vehicle cooperative path planning conflict resolution
  • 相关文献

参考文献6

二级参考文献62

  • 1严平,丁明跃,周成平,郑昌文.飞行器多任务在线实时航迹规划[J].航空学报,2004,25(5):485-489. 被引量:27
  • 2Beard R W, McLain T W, Goodrich M A, et al. Coordinated target assignment and intercept for unmanned air vehicles[J]. IEEE Transactions on Robotics and Automation, 2002, 18(6): 911-922.
  • 3McLain T W, Beard R W. Coordination variables, coordination functions and cooperative-timing missions[J]. Journal of Guidance, Control, and Dynamics, 2005, 28(1) 150 -161.
  • 4Beard R W, MeLain T W, Nelson D B, et al. Decentralized cooperative aerial surveillance using fixed wing miniature UAVs[J]. Proceedings of the IEEE, 2006, 94(7) 1306 -1324.
  • 5Dimarogonas D V, Kyriakopoulos K J. On the rendezvous problem for multiple nonholonomic agents [J]. IEEE Transactions on Automatic Control, 2007, 52 (5) : 916- 922.
  • 6Ren W, Chao H, Bourgeous W, et al. Experimental validation consensus algorithms for multivehicle cooperative control[J]. IEEE Transactions on Control System Technology, 2008, 16(4): 745-752.
  • 7Olfati-Saber R, Fax J A, Murray R M. Consensus and cooperation in networked multi agent systems[J]. Proceedings of the IEEE, 2007, 95(1): 215- 233.
  • 8Ren W, Beard R W, Atkins E M. Information consensus in multivehicle cooperative control: collective group be havior through local interaction[J]. IEEE Control System Magazine, 2007, 27(2): 71-82.
  • 9Kingston D B, Ren W, Beard R W. Consensus algorithms are input-to-state stable[C]//Proceedings of 2005 American Control Conference. 2005: 1686-1690.
  • 10Ren W. Multi-vehicle consensus with a time varying reference state[J]. Systems & Control Letters, 2007, 56(7/ 8) : 474 -483.

共引文献125

同被引文献13

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部