摘要
由于存在理论模型不完善、实验验证技术不充分等问题,等离子体鞘套中的信息传递难题尚未获得可行的工程化解决方案。首先通过数值计算与理论建模研究了X射线光子与等离子体相互作用机理,构建了X射线与等离子体相互作用理论模型,与传统波动模型中X射线可无衰减地穿透等离子体的结论不同,本文建立的修正理论模型指出X射线在等离子体中的透过率与等离子体电子密度及入射X射线流量密切相关。其次通过栅控X射线调制发射、单光子X射线探测、动态等离子体产生等核心技术攻关,演示验证平台搭建,实现了高动态范围(电子密度109~1014/cm^(3))、长持续时间(大于20 min)等离子体环境下,通信速率优于1 Mbps,误码率10-5量级的X射线通信实验验证。实验结果表明,所建立的修正理论模型可对实验现象进行良好的解释与预测,全物理闭环式实验系统可为等离子体鞘套中的通信难题提供解决思路。
Because of the imperfect theoretical model and insufficient experimental verification technologies,the problem of information transmission in the plasma sheath has not yet been resolved.In this paper,the interaction mechanism between X-ray photons and plasma is studied firstly,and a modified theoretical model is provided through numerical calculation and theoretical modeling.Different from the conclusion that X-rays can penetrate plasma without attenuation in the traditional wave model,the modified theoretical model established in this paper points out that the transmittance of X-rays in plasma is closely related to plasma electron density and incident X-ray flux.Secondly,an experimental system was built using a grid-controlled X-ray modulation emission source,a single-photon X-ray detector,and a dynamic plasma generator.Using this system,the non-uniform plasma which electron density ranges from 10^(9)/cm^(3)to 10^(14)/cm^(3)is generated,and the X-ray communication with 1 Mbps communication rante and 10-5 bit error rate is also verified.The experimental results indicate that the modified theoretical model can explain and predict the experimental phenomena,and the experimental system can provide the solution for solving the communication problems in the plasma sheath.
作者
苏桐
盛立志
刘永安
张雪晗
刘一凡
赵宝升
SU Tong;SHENG Lizhi;LIU Yongan;ZHANG Xuehan;LIU Yifan;ZHAO Baosheng(State Key Laboratory of Transient Optics and Photonics,Xi'an Institute of Optics and Precision Mechanics,Chinese Academy of Sciences,Xi'an 710119,China;University of Chinese Academy of Sciences,Beijing 100049,China)
出处
《光子学报》
EI
CAS
CSCD
北大核心
2021年第11期314-322,共9页
Acta Photonica Sinica
基金
国家自然科学基金(No.61901470),陕西省重点研发计划(No.2020GY-032)。