摘要
准确把握社会情绪的变化特征并分析其影响因素有助于为政府决策提供支持。社交网络将传统单向性的信息传播方式转变为多元互动的交流结构,进一步放大了突发公共卫生事件中社会情绪的流变性,把控情绪强度及倾向可为精准施策提供有力支撑。该文借鉴心理学中情绪维度划分模型,将社会情绪分为7种类型、3个强度等级;考虑不同类型情绪具有不可叠加性,为尽可能还原文本表达的全部情绪类型,结合句法规则与情绪词典,提出基于单篇文本提取7种情绪类型的方法,并以国内新冠疫情事件为研究案例,按照事件的发展阶段进行社会情绪的时空特征和事件驱动因素分析。研究表明,该方法能从多维度、多层次挖掘社会情绪各阶段的变化特征,为政府决策提供引导策略。
It′s helpful for government to make decision by grasping the change characteristics of social emotions and analyzing their influencing factors.Social networks have transformed information dissemination from traditional one-way to multi-interactive,which further amplifies the variability of social emotions in public health events.Controlling the intensity and tendency of emotions can provide strong support for precise policy implementation.First of all,referring to the emotional dimension model in psychology,social emotions are divided into seven types,and the emotion intensity is divided into three levels.Secondly,considering the non superposition of different types of emotions,this paper proposes an idea of calculating seven types of emotion values in a single text based on syntactic rules and emotion dictionaries.Finally,taking COVID-19 incident as an example,this paper analyzes the spatio-temporal characteristics and event driving factors of social emotions according to the development stages of COVID-19 incident.The research shows that the proposed method in this paper is able to analyze the characteristics of social emotions in different stages of events from multi-dimensional and multi-level,and provide a guiding strategy for government decision-making.
作者
曹天阳
张雪英
怀安
CAO Tian-yang;ZHANG Xue-ying;HUAI An(Key Laboratory of Virtual Geographic Environment of Ministry of Education,Nanjing Normal University/Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application,Nanjing 210023,China)
出处
《地理与地理信息科学》
CSCD
北大核心
2021年第6期16-23,共8页
Geography and Geo-Information Science
基金
国家自然科学基金重点项目“网络文本蕴含地理信息理解与知识图构建”(41631177)
国家自然科学基金面上项目“‘文本-地图’结合的地理知识图谱构建方法”(41971337)。
关键词
公共卫生事件
社会情绪
时空演变
新冠疫情事件
情感分析
public health event
social emotion
spatio-temporal evolution
the COVID-19 incident
emotion analysis