期刊文献+

具有时变时滞和速度相关材料密度的非线性粘弹性方程的整体存在性和一般衰减性 被引量:1

Global Existence and General Decay for a Nonlinear Viscoelastic Equation with Time-Varying Delay and Velocity-Dependent Material Density
下载PDF
导出
摘要 研究了一类具有时变时滞效应和速度相关材料密度的非线性粘弹性方程.在适当的松弛函数和时变时滞效应假设下,分别用Faedo-Galerkin方法和摄动能量方法证明了弱解的整体存在性和能量的一般衰减性.这一结果改进了早期文献[1,48-50]中的结果. In this paper,we investigate a nonlinear viscoelastic equation with a time-varying delay effect and velocity-dependent material density.Under suitable assumptions on the relaxation function and time-varying delay effect,we prove the global existence of weak solutions and general decay of the energy by using Faedo-Galerkin method and the perturbed energy method respectively.This result improves earlier ones in the literature,such as Refs.[1,48-50].
作者 张再云 刘振海 邓又军 Zhang Zaiyun;Liu Zhenhai;Deng Youjun(School of Mathematics,Hunan Institute of Science and Technology,Hunan Yueyang 414006;College of Science,Guangxi University for Nationalities,Nanning 530006;School of Mathematics and Statistics,Central South University,Changsha,410083)
出处 《数学物理学报(A辑)》 CSCD 北大核心 2021年第6期1684-1704,共21页 Acta Mathematica Scientia
基金 国家自然科学基金(12071413,11971487) the European Union’s Horizon 2020 Research and Innovation Programme under the Marie Sklodowska-Curie(823731CONMECH) 长沙理工大学数学模型与分析重点实验室项目(2018MMAEZD05) 湖南省教育厅科学研究项目(18A325) 广西自科基金(2018GXNSFDA138002) 湖南自科基金(2021JJ30297,2020JJ2038) 湖南理工学院科研创新团队项目(2019-TD-15) 海南省计算与应用重点实验室开放基金(JSKX201905)。
关键词 整体存在性 非线性粘弹性方程 一般衰减性 时变时滞 速度相关材料密度 摄动能量法 Global existence Nonlinear viscoelastic equation General decay Time-varying delay Velocity-dependent material density Perturbed energy method
  • 相关文献

参考文献1

二级参考文献13

  • 1Cavalcanti M M, Domingos Cavalcanti V N, Ferreira J. Existence and uniform decay for a nonlinear viscoelastic equation with strong damping. Math Meth Appl Sci, 2001, 24: 1043- 1053.
  • 2Messaoudi S A, Tatar N. Exponential and polynomial decay for a quasilinear viscoelastic equation. Nonlinear Anal, 2008, 68: 785-793.
  • 3Messaoudi S A, Tatar N. Global existence and uniform stability of solutions for a quasilinear viscoelastic problem. Math Meth Appl Sci, 2007, 30: 665-680.
  • 4Cavalcanti M M, Domingos Cavalcanti V N, Soriano J A. Exponential decay for the solution of semilinear viscoelastic wave equations with localized damping. Electronic J Differential Equations, 2002, 44: 1-14.
  • 5Berrimi S, Messaoudi S A. Exponential decay of solutions to a viscoelastic equation with- nonlinear localized damping. Electronic J Differential Equations, 2004, 88: 1-10.
  • 6Messaoudi S A. Blow-up and global existence in a nonlinear viscoelastic wave equation. Math Nachr, 2003, 260: 58-66.
  • 7Messaoudi S A. Blow-up of positive-initial-energy solutions of a nonlinear viscoelastic hy- perbolic equation. J Math Anal Appl, 2006, 320: 920-915.
  • 8Andrade D, Fatori L H, Rivera J M. Nonlinear transmission problem with a dissipative boundary condition of memory type. Electronic J Differential Equations, 2006, 53, 1-16.
  • 9Berrimi S, Messaoudi S A. Existence and decay of solutions of a viscoelastic equation with a nonlinear source. Nonlinear Anal, 2006, 64: 2314-2331.
  • 10Cavalcanti M M, Domingos Cavalcanti V N, Ma T F, Soriano J A. Global existence and asymptotic stability for viscoelastic problems. Differential Integral Equation, 2002, 15: 731-748.

共引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部