摘要
该文研究了具有一般反应函数与贴壁生长现象的随机恒化器模型的全局动力学行为.一方面,得到了微生物灭绝的条件;另一方面,通过构造合适的Lyapunov函数得到了模型存在遍历的平稳分布的条件,此时微生物持久生存.最后,实例和数值模拟验证了该文的理论结果.
This paper deals with problems of a stochastic chemostat model with general response function and wall growth.We show the conditions for the microorganism to be extinct.On the other hand,by constructing suitable stochastic Lyapunov functions,we establish sufficient conditions for the existence of ergodic stationary distribution of the solution to the model which means the microorganism can become persistent.Finally,example and numerical simulations are introduced to illustrate the analytical results.
作者
刘丽雅
蒋达清
Liu Liya;Jiang Daqing(School of Petroleum Engineering,Key Laboratory of Unconventional Oil&Gas Development,China University of Petroleum(East China),Ministry of Education,Shandong Qingdao 266580;College of Science,China University of Petroleum,Shandong Qingdao 266580)
出处
《数学物理学报(A辑)》
CSCD
北大核心
2021年第6期1912-1924,共13页
Acta Mathematica Scientia
基金
国家自然科学基金(11871473)
中央高校基本科研业务费专项资金(15CX08011A)。
关键词
恒化器
帖壁生长
灭绝性
平稳分布
一般反应函数
Chemostat
Wall growth
Extinction
Stationary distribution
General response functions