摘要
通过3个广义范数,即(ξ,∞)-范数、(ξ,1)-范数和(ξ,2)-范数及构造Lyapunov泛函的方法,研究了具有常时滞和时变时滞的Hopfield神经网络模型的动力学行为,证明了系统平衡点的存在唯一性和全局指数稳定性,最后通过数值算例及仿真验证了所得结果的有效性.
The dynamic behaviors of the Hopfield neural network models with constant and time-varying delays were investigated using the three generalized norms,namely,(ξ,∞)-norm,(ξ,1)-norm and(ξ,2)-norm,respectively,and the method of constructing Lyapunov functional.The existence uniqueness and global exponential stability of the system equilibrium point are proved.Finally,the validity of the results is verified by numerical example and simulation.
作者
张雪莹
陈展衡
Zhang Xueying;Chen Zhanheng(College of Mathematics and Statistics,Yili Normal University,Yining,Xinjiang 835000,China;Institute of Applied Mathematics,Yili Normal University,Yining,Xinjiang 835000,China)
出处
《伊犁师范学院学报(自然科学版)》
2021年第3期1-7,共7页
Journal of Yili Normal University:Natural Science Edition
基金
国家自然科学基金项目(61663045).