摘要
针对永磁同步发电系统中转速不稳定、转矩/功率脉动大的问题,采用模型预测控制策略对系统机/网侧变流器进行控制,提高系统工作稳定性与发电质量。机侧变流器采用模型预测直接转矩控制方法,网侧变流器采用模型预测直接功率控制方法,并在此基础上将机侧输出功率直接反馈给网侧母线电压控制外环,根据机侧功率变化实时改变网侧有功功率的设定值,降低母线电压与功率的脉动,实现机/网侧变流器一体化控制。仿真实验结果表明,文中研究的模型预测控制策略相比传统控制方法,机侧转速、转矩波动分别减小了60%,75%,网侧母线电压与功率脉动分别减小了70%,75%,整体响应速度提高50%。
In view of the unstable rotating speed and large torque/power fluctuation of the permanent magnet synchronous power generation system,the model predictive control strategy is adopted to control the system machine-side and grid-side converters,so as to improve the operation stability and power generation quality of the system.The direct torque control(DTC)method of model prediction is adopted for the machine-side convertor,while the direct power control method of model prediction is adopted for the grid-side converter.On this basis,the output power on the machine side is directly fed back to the voltage control outer loop of the grid-side bus.According to the change of machine-side power,the set value of active power on the grid side is changed in real time to reduce the fluctuation of bus voltage and power,so as to realize the integrated control of the grid-side converter.The results of simulation experiment show that,in comparison with the traditional control method,the model predictive control strategy studied in this paper can make the machine-side rotating speed reduced by 60%and torque fluctuation by 75%,the grid-side bus voltage reduced by 70%and power fluctuation by 75%,and the overall response speed increased by 50%.
作者
张昊清
魏东
ZHANG Haoqing;WEI Dong(School of Electrical and Information Engineering,Beijing University of Civil Engineering and Architecture,Beijing 100044,China;Beijing Key Laboratory of Intelligent Processing for Building Big Data,Beijing 100044,China)
出处
《现代电子技术》
2021年第23期101-105,共5页
Modern Electronics Technique
基金
北京市属高校高水平创新团队建设计划项目(IDHT20190506)
北京市教委科技计划重点项目(KZ201810016019)。
关键词
永磁同步发电系统
模型预测控制
系统数学模型
功率设定
功率反馈
直接转矩控制
一体化控制
permanent magnet synchronous power generation system
model predictive control
mathematical model of system
power setting
power feedback
DTC
integrated control