期刊文献+

锂离子电池分岔水冷板结构研究及优化 被引量:1

Structure design and optimization of bifurcated water cold plate of lithium ion battery
下载PDF
导出
摘要 将单进出水口的平行流道水冷板与微通道水冷板分岔结构相结合,建立不同单进出水口分岔流道水冷板。采用计算流体力学的方法,研究支路流道宽度对两种分岔流道水冷板冷却性能的影响规律;并进一步分析流道宽度、路径对两侧分岔流道水冷板(以下简称侧分水冷板)冷却性能的影响规律。研究表明:在适当流道宽度下,侧分水冷板具有更优的散热效果。调整流道宽度对侧分水冷板的冷却性能提升不明显。增加流道路径能较好地增强水冷板的散热能力;次支路与支路流道之间的夹角越小,散热效果越好。 The parallel channel water cooling plate of single inlet and outlet was combined with the bifurcation structure of micro-channel water cooling plate,and the bifurcation structure of different single inlet and outlet water cooling plate was established.Using computational fluid dynamics method,the effect of the width of the branch pipe on the cooling performance of the water cooling plate of two kinds of diverging pipes was studied.And further analyze the influence of the width and path of the flow channel on the cooling performance of two side bifurcated flow channel water cooling plate.The results show that the side cooling plate has better heat dissipation effect with proper channel width.The cooling performance of the side water cooling plate is not improved obviously by adjusting the flow passage width.Increasing the flow path can enhance the heat dissipation capacity of the water cooling plate.The smaller the angle between the sub-branch and the branch channel,the better the heat dissipation effect.
作者 张兰春 章嘉晶 王天波 陈茜 ZHANG Lanchun;ZHANG Jiajing;WANG Tianbo;CHEN Qian(School of Automotive and Traffic Engineering,Jiangsu University of Technology,Changzhou Jiangsu 213001,China)
出处 《电源技术》 CAS 北大核心 2021年第11期1463-1466,共4页 Chinese Journal of Power Sources
基金 江苏省“333”工程科研项目(BRA2020315) 江苏理工校研究生实践创新计划项目(XSJCX20_47)。
关键词 锂离子电池 液冷散热 结构优化 lithium ion battery liquid cooling configuration optimization
  • 相关文献

参考文献1

二级参考文献14

  • 1Pesaran A A. Thermal characterization of selected EV and HEV balteries [C]//Ann Battery Conf. Long Beach, CA Jan 9-12, 2001.
  • 2Duan X, Nalerer G F, Heat transfer in phase change materials for thermal management of electric vehicle battery modules [J] Int'l J Heat and Mass Transfer, 2010, 53: 5176-5182.
  • 3.lung D Y, Lee, B H, Kim S W, Development of battery management system for nickel-metal hydride batteries in electric vehicle applications [J] J Power Sources, 2002, 109: 1-10.
  • 4Dickinson B, Swan D. EV battery pack life: Pack degradation and solutions [C]//Proc Future Transportation Tech Conf and Expo, 1995.
  • 5Sato N. Thermal behavior analysis of lithium-ion batteries for electric and hybrid vehicles [J]. J Power Sources, 2001, 99 (1/2): 70-77.
  • 6Mahamud R, Park C. Reciprocating air flow for Li-ion battery thermal management to improve temperature uniformity [J]. J Power Sources, 2011,196: 5685-5696.
  • 7Kizilel R, Sabbah R, Selman J R, et al. An alternative cooling system to enhance the safety of Li-ion battery packs [J]. J Power Sources, 2009, 194:1105-1112.
  • 8Sabbah R, Kizilel R, Selman J R, et al. Active (air-cooled) vs.passive (phase change material) thermal management of high power lithium-ion packs: Limitation of temperature rise and uniformity of temperature distribution [J]. J Power Sources, 2008, 182:630 638.
  • 9Giuliano M R, Advani S G, Prasad A K, Thermal analysis and management of lithium-titanate batteries [J]. J Power Sources, 2011,196: 6517-6524.
  • 10Pesaran A A. Battery thermal management in EVs and HEV: Issues and solutions [C]//Adv Automotive Battery Conf, Las Vegas, Nevada, Feb 6-8, 2001.

共引文献40

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部