摘要
扩频信号由于具有传输速率高、抗多径衰落等特点,已广泛应用于无人机通信领域。基于此,提出了一种对无人机通信链路中扩频信号的识别改进方法。该方法通过进行最小均方误差(Least Mean Square,LMS)自适应滤波的优化处理,实现了环境干扰信号的有效抑制,并结合多重相关谱计算提取累积特征,增强了复杂背景中扩频信号识别效果。该新思路无需先验信息,具有良好的抗噪性,且稳健性强,工程实用性好。仿真结果显示新方法的识别性能较佳,且可在低信噪比情况下成功实现盲识别。
Spread spectrum signal has been widely used in the field of UAV Communication because of its high transmission rate and anti multipath fading.Based on this,an improved method for the identification of spread spectrum signal in UAV communication link is proposed.Through the optimization of Least Mean Square(LMS)adaptive filtering,the effective suppression of environmental interference signal is realized,and the cumulative features are extracted combined with multiple correlation spectrum calculation to enhance the recognition effect of spread spectrum signal in complex background.The new idea does not need prior information,has good noise resistance,strong robustness and good engineering practicability.Simulation results indicate that the new method has better recognition performance and can successfully realize blind recognition under low SNR.
作者
涂航
熊刚
TU Hang;XIONG Gang(Naval Staff,Beijing 100841,China;No.30 Institute of CETC,Chengdu Sichuan 610041,China)
出处
《通信技术》
2021年第11期2490-2495,共6页
Communications Technology
关键词
无人机通信
扩频信号识别
自适应滤波
多重相关
UAV communication
spread spectrum signal identification
adaptive filtering
multiple correlations