摘要
针对传统露天矿区人工巡检存在耗时长、巡检不全面、成本高及存在安全隐患的问题,提出了一种无人机巡检路径规划策略。根据矿区的建筑平面图提取目标单位的方位坐标,以其方位信息与巡检无人机的性能参数为巡检约束条件,建立无人机巡检数学模型,通过借助轮盘赌算法,引进交叉结点操作等方式改进传统蚁群算法,设计出新的矿区巡检路径规划策略,设定3组不同的巡检时间,综合对比改进前后的算法在巡检性能上的差异。结果表明,改进后蚁群算法在5、7和10 min的巡检时间内巡检目标数更多且飞行距离更短,巡检效率更高。
This paper proposes a UAV inspection path planning strategy to eliminate the problems with current manual inspection in opencast mining areas,such as time consumption,incomplete inspection,higher cost,and potential safety hazards.The strategy is realized by extracting the azimuth coordinates of the target unit using the architectural plan of the mining area;developing the inspection mathematical model of UAV by taking the azimuth information and the performance parameters of UAV as inspection constraints;and improving the traditional ant colony algorithm by using roulette algorithm and introducing crossover node operation,designing a new mining inspection path planning strategy,building a simulation experiment platform,and setting up three groups of different inspection time to comprehensively compare the difference of the improved algorithm in inspection performance.The results show that the improved ant colony algorithm exhibits more inspection targets and shorter flight distance within 5,7 and 10 min inspection time,and the higher inspection efficiency.
作者
宣丽萍
李峥
Xuan Liping;Li Zheng(School of Data Science&Engineering,South China Normal University,Shanwei 516600,China;School of Electrical&Control Engineering,Heilongjiang University of Science&Technology,Harbin 150022,China)
出处
《黑龙江科技大学学报》
2021年第6期807-811,共5页
Journal of Heilongjiang University of Science And Technology
关键词
无人机
巡检
煤矿
路径规划
蚁群算法
UAV
coal mine
path planning strategy
ant colony algorithm