期刊文献+

基于集成学习的凝汽器真空度预测

Prediction of Condenser Vacuum Degree Based on Ensemble Learning
下载PDF
导出
摘要 结合外部气象因素与机组工况数据,建立了基于集成学习的火电厂凝汽器真空度预测模型。首先,运用孤立森林(Isolation Forest,iForest)算法完成了数据的异常值识别和清洗。其次,构建Xgboost模型,按照是否考虑温度、气压差分值两种方式,进行预测模型测试。最后,选取山东省内某机组运行数据对两种方案进行了对比分析,结果表明:考虑外部气温、气压差分的真空度预测模型具备更好的表现。 Combined with meteorological factors and unit operating data,a prediction model of condenser vacuum degree in thermal power plant based on ensemble learning was established.Firstly,the outliers of data were identified and cleaned by using isolation forest(iForest)algorithm.Then,the Xgboost model was constructed,and the prediction model was tested according to whether the difference value of temperature and air pressure was considered.Lastly,the two schemes were compared and analyzed based on the operation data of a unit in Shandong province.The results show that the vacuum prediction model considering the difference of external air temperature and air pressure has better performance.
作者 路宽 翟勇 李军 高嵩 杨子江 LU Kuan;ZHAI Yong;LI Jun;GAO Song;YANG Zijiang(State Grid Shandong Electric Power Research Institute,Jinan 250003,China;Shandong Luneng Software Technology Co.,Ltd.,Jinan 250001,China;College of Electrical Engineering and Automation,Shandong University of Science and Technology,Qingdao 266590,China)
出处 《山东电力技术》 2021年第11期64-69,共6页 Shandong Electric Power
基金 国家自然基金青年科学基金项目(61803233)。
关键词 孤立森林 集成学习 凝汽器真空度 气象因素 iForest ensemble learning condenser vacuum degree meteorological factors
  • 相关文献

参考文献9

二级参考文献69

共引文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部