期刊文献+

基于FFT和CNN的滚动轴承故障诊断方法 被引量:8

A fault diagnosis method of rolling bearing based on FFT and CNN
下载PDF
导出
摘要 为提高滚动轴承故障诊断的识别准确率、摆脱信号处理方法对专家经验的过度依赖,提出一种基于快速傅里叶变换(FFT)和卷积神经网络(CNN)的滚动轴承故障诊断方法。即对滚动轴承原始振动信号进行快速傅里叶变换,再将得到的一维数据转变为二维的特征图,输入到ResNet-18网络中进行学习训练,以实现滚动轴承的故障诊断。通过与其他几种输入方法进行对比分析,验证了该方法的有效性以及优越性。实验结果表明该方法诊断准确率高、收敛速度快,并且信号处理过程不需要设定相关预定义参数,摆脱了对专家经验的过度依赖。 In order to improve the recognition accuracy of rolling bearing fault diagnosis,and get rid of the excessive dependence of signal processing methods on expert experience,a rolling bearing fault diagnosis method based on fast Fourier transform(FFT)and convolutional neural network(CNN)is proposed in this paper.The fast Fourier transform is performed on the original vibration signal of the rolling bearing,and then the obtained one-dimensional data is transformed into a two-dimensional feature map,which is input into the ResNet-18 network for learning and training,so as to realize the fault diagnosis of rolling bearing.Through comparative analysis with several other input methods,the effectiveness and superiority of this proposed method are verified.This method has high diagnostic accuracy and fast convergence speed,and the signal processing process in this method does not need to set relevant predefined parameters,thus getting rid of the excessive dependence on expert experience.
作者 尹文哲 夏虹 彭彬森 朱少民 王志超 YIN Wenzhe;XIA Hong;PENG Binsen;ZHU Shaomin;WANG Zhichao(Key Laboratory of Nuclear Safety and Advanced Nuclear Energy Technology,Ministry of Industry and Information Technology,Harbin Engineering University,Harbin 150001,China;Fundamental Science on Nuclear Safety and Simulation Technology Laboratory,Harbin Engineering University,Harbin 150001,China)
出处 《应用科技》 CAS 2021年第6期97-101,共5页 Applied Science and Technology
基金 国家自然科学基金项目(51379046) 黑龙江省自然科学基金项目(E2017023).
关键词 滚动轴承 故障诊断 深度学习 卷积神经网络 残差网络 振动信号 快速傅里叶变换 ResNet-18网络 rolling bearing fault diagnosis deep learning convolutional neural network residual network vibration signal FFT ResNet-18
  • 相关文献

参考文献7

二级参考文献61

共引文献505

同被引文献73

引证文献8

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部