期刊文献+

Multi-scale finite element simulation on large deformation behavior of wood under axial and transverse compression conditions 被引量:6

原文传递
导出
摘要 Multi-scale finite element method is adopted to simulate wood compression behavior under axial and transverse loading. Representative volume elements (RVE) of wood microfibril and cell are proposed to analyze orthotropic mechanical behavior. Lignin, hemicellulose and crystalline-amorphous cellulose core of spruce are concerned in spruce nanoscale model. The equivalent elastic modulus and yield strength of the microfibril are gained by the RVE simulation. The anisotropism of the crystalline-amorphous cellulose core brings the microfibril buckling deformation during compression loading. The failure mechanism of the cell-wall under axial compression is related to the distribution of amorphous cellulose and crystalline cellulose. According to the spruce cell observation by scanning electron microscope, numerical model of spruce cell is established using simplified circular hole and regular hexagon arrangement respectively. Axial and transverse compression loadings are taken into account in the numerical simulations. It indicates that the compression stress-strain curves of the numerical simulation are consistent with the experimental results. The wood microstructure arrangement has an important effect on the stress plateau during compression process. Cell-wall buckling in axial compression induces the stress value drops rapidly. The wide stress plateau duration means wood is with large energy dissipation under a low stress level. The numerical results show that loading velocity affects greatly wood microstructure failure modes in axial loading. For low velocity axial compression, shear sliding is the main failure mode. For high velocity axial compression, wood occur fold and collapse. In transverse compression, wood deformation is gradual and uniform, which brings stable stress plateau.
出处 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2021年第7期1136-1151,I0002,共17页 力学学报(英文版)
基金 supported by the National Natural Science Foundation of China(Grants Nos 11302211,11390361,and 11572299).
  • 相关文献

参考文献5

二级参考文献64

共引文献29

同被引文献77

引证文献6

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部