期刊文献+

基于分位数方法的超高维删失数据的特征筛选 被引量:3

Quantile Feature Screening for Ultra High Dimensional Censored Data
下载PDF
导出
摘要 利用条件分位数分别在响应变量非随机删失和随机删失的情形下研究超高维数据的特征筛选,提出相应的特征筛选方法,理论证明和模拟验证都证明该方法筛选出的变量集满足确定筛选性质和排序一致性。与已有方法相比,本文方法在协变量与删失变量相关时具有相对优势。 In this paper,conditional quantiles are used to study the feature screening problem of ultra-high dimensional data when response variables are randomly censored and nonrandomly censored,respeclively.Then,a corresponding feature screening method is proposed.Through theoretical and simulation study,it is verified that the variable set created by this method satisfies the sure screening and ranking consistency properties.Compared with the existing methods,this method has some advantages when covariates and censored variables are correlative.
作者 田镇滔 张军舰 TIAN Zhentao;ZHANG Junjian(School of Mathematics and Statistics,Guangxi Normal University,Guilin Guangxi 541006,China)
出处 《广西师范大学学报(自然科学版)》 CAS 北大核心 2021年第6期99-111,共13页 Journal of Guangxi Normal University:Natural Science Edition
基金 国家自然科学基金(11861017) 广西研究生教育创新计划项目(XYCSZ2020061)。
关键词 超高维删失数据 特征筛选 条件分位数 ultra-high dimensional censoring data feature screening conditional quantile
  • 相关文献

参考文献6

二级参考文献3

共引文献18

同被引文献38

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部