期刊文献+

广义Howell设计GHD(n+5,3n)的存在性

Existence of Generalized Howell Designs GHD(n+5,3n)s
下载PDF
导出
摘要 广义Howell设计是一类双可分解设计,与置换表、多层常重码有密切联系。本文利用可迁和不可迁starter-adder直接构造方法和广义Howell标架递推工具,给出广义Howell设计新的构造,除了53个可能例外值,解决了每行和每列恰好有5个空单元格的广义Howell设计GHD(n+5,3n)的存在性问题。利用广义Howell设计和多层常重码之间的关系,得到相应最优多层常重码MCWC(3,3n;1,n+5;1,n+5;8)的存在性。 Generalized Howell design is a kind of double resolvable designs,which are closely related to permutation arrays and multiply constant-weight codes.By making full use of the direct construction method of transitive starter-adder,intransitive starter-adder and generalized Howell frames as recursive tool,some new constructions for generalized Howell designs are given in this paper.The problem of existence of the generalized Howell design GHD(n+5,3n)s with exactly 5 empty cells in each row and column is solved with 53 possible exceptions.Then,the existence of the corresponding optimal multiply constant-weight codes MCWC(3,3n;1,n+5;1,n+5;8)is given by using the relationship between the generalized Howell designs and the multiply constant-weight codes.
作者 姚金洋 胡颖 王金华 YAO Jinyang;HU Ying;WANG Jinhua(School of Sciences,Nantong University,Nantong Jiangsu 226007,China)
机构地区 南通大学理学院
出处 《广西师范大学学报(自然科学版)》 CAS 北大核心 2021年第6期119-129,共11页 Journal of Guangxi Normal University:Natural Science Edition
基金 国家自然科学基金(11371207)。
关键词 广义Howell设计 多层常重码 广义Howell标架 starter-adder generalized Howell design multiply constant-weight code generalized Howell frame starter-adder
  • 相关文献

参考文献2

二级参考文献21

  • 1Juan Du,R. Julian R. Abel,Jinhua Wang.Some new resolvable GDDs with k = 4 and doubly resolvable GDDs with k = 3[J]. Discrete Mathematics . 2015 (11)
  • 2R. Julian,R. Abel.Existence of Five MOLS of Orders 18 and 60[J]. J. Combin. Designs . 2015 (4)
  • 3R. Julian R. Abel,Nigel Chan,Charles J. Colbourn,E. R. Lamken,Chengmin Wang,Jinhua Wang.Doubly Resolvable Nearly Kirkman Triple Systems[J]. J. Combin. Designs . 2013 (8)
  • 4D. T. Todorov.Four Mutually Orthogonal Latin Squares of Order 14[J]. J Combin Designs . 2012 (8)
  • 5Nearly Kirkman triple systems of order 18 and Hanani triple systems of order 19[J]. Discrete Mathematics . 2011 (10)
  • 6R. Julian R. Abel,Frank E. Bennett.Existence of 2 SOLS and 2 ISOLS[J]. Discrete Mathematics . 2011 (5)
  • 7R. Julian R. Abel,E.R. Lamken,Jinhua Wang.A few more Kirkman squares and doubly near resolvable BIBDs with block size 3[J]. Discrete Mathematics . 2007 (7)
  • 8R. Julian R. Abel,F. E. Bennett,G. Ge.The Existence of Four HMOLS with Equal Sized Holes[J]. Designs, Codes and Cryptography . 2002 (1)
  • 9Charles J. Colbourn,E. R. Lamken,Alan C. H. Ling,W. H. Mills.The Existence of Kirkman Squares—Doubly Resolvable ( v ,3,1)- BIBD s[J]. Designs, Codes and Cryptography . 2002 (1)
  • 10R. C. Mullin,W. D. Wallis.The existence of Room squares[J]. Aequationes Mathematicae . 1975 (1)

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部