摘要
广义Howell设计是一类双可分解设计,与置换表、多层常重码有密切联系。本文利用可迁和不可迁starter-adder直接构造方法和广义Howell标架递推工具,给出广义Howell设计新的构造,除了53个可能例外值,解决了每行和每列恰好有5个空单元格的广义Howell设计GHD(n+5,3n)的存在性问题。利用广义Howell设计和多层常重码之间的关系,得到相应最优多层常重码MCWC(3,3n;1,n+5;1,n+5;8)的存在性。
Generalized Howell design is a kind of double resolvable designs,which are closely related to permutation arrays and multiply constant-weight codes.By making full use of the direct construction method of transitive starter-adder,intransitive starter-adder and generalized Howell frames as recursive tool,some new constructions for generalized Howell designs are given in this paper.The problem of existence of the generalized Howell design GHD(n+5,3n)s with exactly 5 empty cells in each row and column is solved with 53 possible exceptions.Then,the existence of the corresponding optimal multiply constant-weight codes MCWC(3,3n;1,n+5;1,n+5;8)is given by using the relationship between the generalized Howell designs and the multiply constant-weight codes.
作者
姚金洋
胡颖
王金华
YAO Jinyang;HU Ying;WANG Jinhua(School of Sciences,Nantong University,Nantong Jiangsu 226007,China)
出处
《广西师范大学学报(自然科学版)》
CAS
北大核心
2021年第6期119-129,共11页
Journal of Guangxi Normal University:Natural Science Edition
基金
国家自然科学基金(11371207)。