摘要
近年来移动机器人应用逐渐广泛,以定位、路径规划等导航技术成为移动机器人研究的热点问题,随着移动机器人执行任务的环境复杂度逐渐增加,移动机器人通过与环境交互实时学习进行路径规划,成为新的研究趋势。作者提出了一种局部路径规划算法,以Soft-Actor-Critic(SAC)算法为框架,以实现机器人通过激光雷达获取的地图信息进行局部路径规划。首先,针对规划问题设计连续的状态-动作变量,并设计了一种连续的奖励函数,使得移动机器人每采取一个动作都可以获得相应的奖励,提高了训练效率,最后建立仿真环境,对智能体进行训练学习,结果验证了算法的有效性。
Mobile robot applications in recent years has been to localization,path planning for mobile robot navigation technology such as the hot issues of the study,along with the mobile robot to perform a task environment complexity increases gradually,mobile robot path planning,through the interaction with the environment in real time to study to become a new research trend,in this paper,we propose a framework for training Soft-Actor-Critic(SAC)algorithm,in order to realize the robot with a laser radar map information for local path planning,first for planning problems involving statevariable,and designed a kind of compensation function in a row,Finally,a simulation environment is established to train and learn the agent,and the results verify the effectiveness of the algorithm.
作者
胡琴
赵一亭
夏方平
张鹏
HU Qin;ZHAO Yi-ting;XIA Fang-ping;ZHANG Peng(School of Automation,Wuhan University of Technology,Wuhan 430070,China)
出处
《武汉理工大学学报》
CAS
2021年第9期79-84,共6页
Journal of Wuhan University of Technology
基金
武汉理工大学国家级大学生创新创业训练计划(202010497076)。
关键词
移动机器人
深度强化学习
局部路径规划
连续奖励函数
mobile robot
deep reinforcement learning
local path planning
continuous reward function