期刊文献+

Global Stability of Multi-wave Configurations for the Compressible Non-isentropic Euler System

原文传递
导出
摘要 This paper is contributed to the structural stability of multi-wave configurations to Cauchy problem for the compressible non-isentropic Euler system with adiabatic exponentγ∈(1,3].Given some small BV perturbations of the initial state,the author employs a modified wave front tracking method,constructs a new Glimm functional,and proves its monotone decreasing based on the possible local wave interaction estimates,then establishes the global stability of the multi-wave configurations,consisting of a strong 1-shock wave,a strong 2-contact discontinuity,and a strong 3-shock wave,without restrictions on their strengths.
作者 Min DING
出处 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2021年第6期921-952,共32页 数学年刊(B辑英文版)
基金 supported by the National Natural Science Foundation of China(No.11701435) the Fundamental Research Funds for the Central Universities(WUT:2020IB018)。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部