期刊文献+

基于变分自编码的半监督微博文本情感分析 被引量:2

SENTIMENT ANALYSIS OF SEMI-SUPERVISED WEIBO TEXT BASED ON VARIATIONAL SELF-ENCODING
下载PDF
导出
摘要 针对微博文本情感分析中大量有标记数据难获取,以及文本特征学习不完全的问题,提出将长短时记忆网络(Long Short-Term Memory,LSTM)及其衍生模型双向长短时记忆网络(Bi-LSTM)引入变分自编码生成模型,构建基于变分自编码的半监督文本分类模型。其中LSTM作为变分编码器中的编码器和解码器,Bi-LSTM作为分类器。分类器既为编码器提供标签信息共同生成隐变量,也与隐变量通过解码器共同重构数据,利用无标记数据的有用信息提高分类器的性能。与其他方法在同一公开数据集上对比的实验结果表明,该模型的分类效果更好。 Aiming at the problems of large amounts of labeled data in the sentiment analysis of Weibo text and incomplete learning of the text features,the Long-short-term memory network(LSTM)and its derivative model Bi-long-short-term memory network(Bi-LSTM)were introduced into the variational auto-encoding generation.In the model,a semi-supervised text classification model based on variational self-encoding is constructed.Among them,LSTM was used as the encoder and decoder in the variational encoder,and Bi-LSTM was used as the classifier;the classifier not only provided the label information for the encoder to jointly generate the hidden variable,but also reconstructed the data together with the hidden variable through the decoder.Using the useful information of unlabeled data to improve the performance of the classifier.Compared with other methods on the same open dataset,the experimental results show that the classification effect of this model is better.
作者 韩萍 刘爽 贾云飞 孙佳慧 Han Ping;Liu Shuang;Jia Yunfei;Sun Jiahui(School of Electronic Information and Automation,China Civil Aviation University,Tianjin 300300,China;School of Computer Science and Technology,China Civil Aviation University,Tianjin 300300,China;Basic Laboratory Center,China Civil Aviation University,Tianjin 300300,China)
出处 《计算机应用与软件》 北大核心 2021年第12期280-285,共6页 Computer Applications and Software
基金 民航安全能力建设项目(20600418) 中国民航大学中央高校基本科研业务费专业项目(3122019114)。
关键词 微博文本 情感分析 变分自编码 Weibo text Sentiment analysis Variational self-encoding
  • 相关文献

参考文献11

二级参考文献71

  • 1王根,赵军.基于多重标记CRF句子情感分析的研究[C]//全国第九届计算机语言学学术会议论文集.大连:[出版者不详],2007.
  • 2DAVIDOV D, TSUR O, RAPPOPORT A. Enhanced sentiment learning using Twitter hashtags and smileys[C]//Proceedings of the 23rd International Conference on Computational Linguistics.Beijing: Tsinghua University Press, 2010:241-249.
  • 3BARBOSA L, FENG J. Robust sentiment detection on Twitter from biased and noisy data[C]//Proceedings of the 23rd International Conference on Computational Linguistics.Beijing:Tsinghua University Press, 2010:36-44.
  • 4HASSAN A, QAZVINIAN V, RADEV D. What's with the attitude? Identifying sentences with attitude in online discussions[C]//Proceedings of 2010 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA, USA: Association for Computational Linguistics, 2010:1245-1255.
  • 5MEENA A, PRABHAKAR T, AMATI G, et al. Sentence level sentiment analysis in the presence of conjuncts using linguistic analysis[C]//Advances in Information Retrieval. Heidelberg: Springer Berlin, 2007:573-580.
  • 6TURNEY P D. Thumbs up or thumbs down? semantic orientation applied to unsupervised classification of reviews[C]//Proceedings of 40th Annual Meeting of the Association for Computational Linguistics. Somerset: ACL, 2002:417-424.
  • 7SOCHER R, PENNINGTON J, HUANG E H, et al. Semi-supervised recursive auto-encoders for predicting sentiment distributions[C]//Proceedings of 2011 Conference on Empirical Methods in Natural Language Processing. [S.l.]:[s.n.], 2011: 151-161.
  • 8TAN Chenhao, LEE Lilian, TANG Jie, et al. User-level sentiment analysis incorporating social networks[C]//Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2011:1397-1405.
  • 9LI Shoushan, WANG Zhongqing, ZHOU Guodong, et al. Semi-supervised learning for imbalanced sentiment classification[C]//Proceedings of the 22nd International Joint Conference on Artificial Intelligence. [s.l.]: AAAI Press, 2011:1826-1831.
  • 10Iadh Ounis, Craig Macdonald, Ian Soboroff. Overview of the TREC 2010 BlogTrack[C]//Proceedings of the 19th Text REtrieval Conference Proceedings (TREC 2010). NIST, 2010.

共引文献228

同被引文献10

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部