期刊文献+

稠油井智能转周分析技术研究及应用 被引量:1

Research and application of intelligent cycle analysis technology in heavy oil wells
下载PDF
导出
摘要 根据稠油井蒸汽吞吐的生产特点,基于胜利油田胜科采油管理区草4沙四区块稠油井生产和经营等历史数据,利用神经网络技术,建立稠油注汽转周预测模型,预测稠油注汽转周井的产量和完全成本,与稠油注汽转周井近、远期产量和完全成本的历史数据进行对比,持续对稠油注汽转周模型进行优化,实现稠油注汽转周多维度智能预测,提高稠油井产量预测准确率、稠油注汽转周最佳时机预测准确率和最佳稠油注汽转周措施方案编制效率,提升稠油井智能决策分析管理能力,提高采油管理区的效益开发水平。该项技术自2021年在胜科采油管理区稠油区块推广应用以来,为采油管理区有效注汽转周165口井次,稠油注汽转周井措施增油量为7×10^(4) t,与2020年同期相比,措施增油量增加了1×10^(4) t,措施有效增油率提升约为17%。 According to the production characteristics of steam huff and puff in heavy oil wells,this paper establishes a pre⁃dictive model for the steam injection cycle of heavy oil with the neural network method and the historical production and management data of heavy oil wells in the 4th Member of Eocene Shahejie Formation(Es4)of Block Cao4 in Shengke oil pro⁃duction management area of Shengli Oilfield.The production and full cost of wells for steam injection cyclic of heavy oil are predicted with the proposed model and compared with their historical data of short-and long-term production and full cost.Further,the model is optimized,which enables the multi-dimensional intelligent prediction of steam injection cycle of heavy oil.Moreover,it improves the production prediction accuracy of heavy oil wells,the prediction accuracy of the best time of steam injection cycle of heavy oil,and the preparation efficiency of the best measure scheme for steam injection cy⁃cle of heavy oil and enhances the intelligent decision-making,analysis,and management ability of heavy oil wells and the benefit and development level of oil production management areas.Since the technology was popularized and applied in the heavy oil block of Shengke oil production management area in 2021,effective steam injection cycle of heavy oil has been performed for 165 well times in the oil production management area.The cumulative oil increment is 7×10^(4) t in wells for steam injection cyclic of heavy oil.The oil increment is increased by 1×10^(4) t,and the effective oil increase rate is about 17%,compared with those in the same period in 2020.
作者 杨耀忠 赵洪涛 马承杰 岳龙 赵峰 张继庆 YANG Yaozhong;ZHAO Hongtao;MA Chengjie;YUE Long;ZHAO Feng;ZHANG Jiqing(Information Management Center,Shengli Oilfield Company,SINOPEC,Dongying City,Shandong Province,257000,China;Petroleum Development Center,Shengli Oilfield Company,SINOPEC,Dongying City,Shandong Province,257000,China)
出处 《油气地质与采收率》 CAS CSCD 北大核心 2021年第6期22-29,共8页 Petroleum Geology and Recovery Efficiency
基金 中国石化科技攻关项目“勘探开发智能化关键技术研究”(P14130)。
关键词 蒸汽吞吐 神经网络 稠油注汽转周 完全成本预测 油藏经营 steam huff and puff neural network steam injection cycle of heavy oil full cost prediction reservoir manage⁃ment
  • 相关文献

参考文献12

二级参考文献143

共引文献424

同被引文献14

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部