摘要
讨论了一类具有非线性发病率的随机SIRS流行病模型,得到了随机模型的一个阈值决定着疾病的灭绝和持续,与相应的确定性模型相比,受白噪声影响的随机模型的阈值小于确定性模型的基本再生数。当噪声较小时,随机模型存在一个无病吸收集,即疾病会以概率1灭绝;当噪声较大时,会抑制疾病的流行。计算机模拟验证了这些结果。
A stochastic SIRS type epidemic model with nonlinear incidence is discussed.We obtain a threshold of the stochastic model which determines the extinction and persistence of the epidemic.Compared with the corresponding deterministic model,the threshold of the stochastic model affected by white noise is smaller than the basic reproduction number of the deterministic model.When the noise is small,the stochastic model exists a disease-free absorbing set which implies that the disease dies out with probability one.When the noise is large,it will suppress the epidemic from prevailing.These results are illustrated by computer simulations.
作者
李婷婷
薛亚奎
LI Tingting;XUE Yakui(School of Science,North University of China,Taiyuan 030051,China)
出处
《重庆理工大学学报(自然科学)》
CAS
北大核心
2021年第11期293-300,共8页
Journal of Chongqing University of Technology:Natural Science
基金
国家自然科学青年基金项目(11301491)
山西省自然科学青年基金项目(2018010221040)
山西“1331”工程重点创新团队项目。
关键词
流行病模型
灭绝
持续性
阈值
epidemic model
extinction
persistence
threshold