期刊文献+

基于PSO-SVR的电力负荷预测 被引量:5

Power Load Forecasting Based on PSO-SVR
下载PDF
导出
摘要 电力系统负荷预测精度直接决定了预测模型的质量。为了降低预测模型输出结果的预测误差,提出了粒子群算法优化支持向量机回归这一智能预测方法。通过对环境温度、节假日、工作日、日期的采集与分析作为模型的输入,以日平均负荷作为模型的输出。最后,通过仿真,对引入粒子群算法的支持向量机回归模型的预测结果进行对比分析。结果表明:优化后的智能模型取得了更为理想的预测结果。 The accuracy of power system load forecasting directly determines the quality of forecasting model.In order to reduce the prediction error of the output results of the prediction model,an intelligent prediction method of particle swarm optimization support vector machine regression was proposed.Through the collection and analysis of environmental temperature,holidays,working days and dates as the input of the model,daily average load as the output of the model.Finally,through simulation,the prediction results of support vector machine regression model with particle swarm optimization algorithm were compared and analyzed.The results showed that the optimized intelligent model achieved better prediction results.
作者 胡永迅 李彦梅 HU Yongxun;LI Yanmei(Collgeg of Electrical and Information Engineering, Anhui University of Science and Technology, Huainan Anhui 232000, China;Anqing Normal University,School of Electronic Engineering and Intelligent Manufacturing,Anqing Anhui 246133,China)
出处 《佳木斯大学学报(自然科学版)》 CAS 2021年第6期54-57,共4页 Journal of Jiamusi University:Natural Science Edition
基金 国家重点研发计划项目(2018YFF0301000) 安徽省高校省级自然科学研究项目(KJ2019ZD12) 安徽理工大学环境友好材料与职业健康研究院研发专项基金资助项目(ALW2020YF21)。
关键词 支持向量机回归 粒子群算法 预测精度 负荷预测 support vector machine regression particle swarm optimization forecasting accuracy load forecasting
  • 相关文献

参考文献7

二级参考文献86

共引文献131

同被引文献43

引证文献5

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部