期刊文献+

Contribution of bacterivorous nematodes to soil resistance and resilience under copper or heat stress 被引量:2

原文传递
导出
摘要 The functional performance of soil ecosystems following disturbance determines ecosystem stability,and although contributions of bacterivorous nematodes to soil ecosystems are recognized,their roles in functional stability have received little attention.The objective of this study was to evaluate the roles of bacterivorous nematodes in functional stability following stress.In a factorial laboratory experiment,soil microcosms were prepared with two levels of nematode abundance,either an enriched abundance of bacterivores(Nema soil)or background abundance of nematodes(CK soil),and three levels of stress,copper,heat,or an unstressed control.The resistance and resilience of nematode abundance,as well as soil microbial function by determining decomposition of plant residues and microbial substrate utilization pattern using a BIOLOG microplate,were followed post stress.The relative changes of two dominant bacterivores,Acrobeloides and Protorhabditis,responded differently to stresses.The resistance and resilience of Protorhabditis were greater than that of Acrobeloides to copper stress during the whole incubation period,while both bacterivores only showed higher resilience under heat stress at the end of incubation.The enrichment of bacterivores had no significant effects on the soil microbial resistance but significantly increased its resilience to copper stress.Under heat stress,the positive effect of bacterivores on soil resilience was only evident from 28 days to the end of incubation.The differences in the responses of soil function to stress with or without bacterivores suggested that soil nematodes could be conducive to ecosystem stability,highlighting the soil fauna should be taken into account in soil sustainable management.
出处 《Soil Ecology Letters》 CAS 2020年第3期220-229,共10页 土壤生态学快报(英文)
基金 supported by the National Foundation of Sciences in China(No.41877056) China Agriculture Research System-Green Manure(No.CARS-22-G-10).
  • 相关文献

参考文献2

二级参考文献7

共引文献17

同被引文献22

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部