摘要
目前空域风场的探测主要靠探空气球、无线电探空仪和测风仪等,但这些方法获得的风场数据覆盖比较稀疏,数据精度不能满足中尺度气象学和航空气象学的研究需要。针对高空区域风场存在准确性低、监测范围小、空间分辨率低等不足,结合ADS-B数据进行风场反演,利用Meteo-Particle粒子模型对风矢量进行估计,得到飞机航线以外的风场分布,并对异常值的影响进行相关分析。研究结果表明,将航空器数据用于气象信息反演具有重大意义,该模型用于风场反演有较高的准确度,可靠性高。与目前天气预报数值模型ECMWF相比,反演风场具有更高的精度,能够反映出以前不具备的有用细节。在风场反演中,异常值的存在严重影响了结果的准确率,进行异常值的筛选能显著提升风向结果的准确性。风向的整体变化趋势有很大改善,特别是在低空层,风向均方根误差变化平稳,波动较小,基本稳定在区域[6,10]。
At present,the main detection methods of aerial wind field still rely on sounding balloons,radiosondes and anemometers.The coverage of wind field data obtained by these methods is relatively sparse,and the accuracy of the data can not meet the research needs of mesoscale meteorology and aeronautical meteorology.In view of the low accuracy,small monitoring range and low spatial resolution of the wind field in the high altitude area,the wind field is retrieved with ADS-B data.The Meteo-Particle model is used to estimate the wind vector to obtain the wind field distribution outside the aircraft route,and the influence of outliers is analyzed.The results show that:it is of great significance to apply aircraft data to meteorological information retrieval,and the model has high accuracy and reliability in wind field retrieval.Compared with the current weather forecast numerical model ECMWF,the retrieval wind field has higher accuracy and can reflect the useful details which are not available before.In the wind field inversion,the existence of outliers seriously affects the accuracy of the results,and the screening of outliers can significantly improve the accuracy of wind direction results.The overall change trend of the wind direction has been greatly improved,especially in the low altitude,the root mean square error of the wind direction changes steadily and fluctuates little,and is basically stable in the region [6,10].
作者
朱嘉慧
王海江
徐自励
李静
ZHU Jiahui;WANG Haijiang;XU Zili;LI Jing(College of Electronic Engineering,Chengdu University of Information Technology,Chengdu 610225,China;The Second Research Institute of CAAC,Chengdu 610041,China)
出处
《成都信息工程大学学报》
2021年第5期493-498,共6页
Journal of Chengdu University of Information Technology
基金
国家自然科学基金资助项目(U1733103)。