期刊文献+

分裂平衡问题的Levitin-Polyak适定性 被引量:1

Levitin-Polyak Well-posedness for Split Equilibrium Problem
下载PDF
导出
摘要 在Banach空间中研究分裂平衡问题在Lucchetti与Patrone意义下的Levitin-Polyak适定性。首先分别给出分裂平衡问题在Lucchetti与Patrone意义下的适定性和Levitin-Polyak型适定性的概念;然后借助分裂平衡问题近似解集的渐进行为及近似解集与解集的关系,建立分裂平衡问题在Lucchetti与Patrone意义下的Levitin-Polyak型适定性的Furi-Vignoli型等的距离刻画;最后,在适当的条件下证明分裂平衡问题在Lucchetti与Patrone意义下的适定性与解的存在唯一性等价。 In this paper,we study the Levitin-Polyak well-posedness(in the sense of Lucchetti and patrone) of the split equilibrium problem in Banach space.Firstly,the concepts of the well-posedness of split equilibrium problems in the sense of Lucchetti and patrone and the well-posedness of Levitin-Polyak type are given respectively.Then,with the help of the asymptotic behavior of the approximate solution set of the split equilibrium problem and the relationship between the approximate solution set and the solution set,the distance characterization of the split equilibrium problem is established in the sense of Levitin-Polyak type well-posed Furi-Vignoli type in the sense of Lucchetti and patrone.Finally,we prove that under suitable conditions,the well-posedness of the split equilibrium problem is equivalent to the existence and uniqueness of its solution.
作者 王瑞 胡容 WANG Rui;HU Rong(College of Applied Mathematics,Chengdu University of Information Technology,Chengdu 610225,China)
出处 《成都信息工程大学学报》 2021年第5期570-575,共6页 Journal of Chengdu University of Information Technology
基金 四川省科技计划资助项目(2018JY01691)。
关键词 分裂平衡问题 Levitin-Polyak适定性 近似解集 距离刻画 解的存在唯一性 split equilibrium problem Levitin-Polyak well-posedness approximating solution set metric characterization existence and uniqueness of solution
  • 相关文献

参考文献1

二级参考文献22

  • 1Tykhonov A N. On the stability of the functional optimization problem[J].USSR3 Gomput Math Yhys, 1966,6 :03, - 634.
  • 2Levitin E S, Polyak B T. Convergence of minimizing sequences in conditional extremum problem[ J]. Soveit Math Dokl, 1996,7: 764 - 767.
  • 3Zolezzi T. Well - posedness criteria in optimization with application to the calculus of variations[ J]. Nonlinear Anal:TMA,1995, 25:437 -453.
  • 4Zolezzi T. Well - posedness of optimal control problems[ J]. Control and Cybernetics, 1994,23:289 - 301.
  • 5Zolezzi T. Extend well -posedness of optimization problems [ J ]. J Optim Theory Appl, 1996,91:257 -266.
  • 6Dontchev A L, Zolezzi T. Well- posedness of Optimization Problem [ M ]. Berlin:Springer- Verlag, 1993.
  • 7Fang Y P, Hu R. Parametric well -posedness for variational inequalities defined by bifunetions [ J]. Comput Math Appl, 2007,53 : 1306 - 1316.
  • 8Cavazzuti E, Morgan J. Well - posed Saddle Point Problems [ M ]. New York : Marcel Dekker, 1983.
  • 9Margiocco M, Pusillo F, Pusillo L. Metric characterizations of Tikhonov well -posedness in value [ J ]. J Optim Theory Appl, 1999,100(2) :377 -387.
  • 10Yang H, Yu J. Unified approaches to well- posednesswith some applications [ J]. J Global Optim,2005,31:371 -381.

共引文献1

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部