期刊文献+

奥氏体化过程中热冲压钢Al-Si镀层的组织演化 被引量:1

Microstructure evolution of Al-Si coating on hot stamping steel during austenitizing
原文传递
导出
摘要 利用差示扫描量热仪、场发射电子探针和激光共聚焦显微镜研究了22MnB5热冲压钢奥氏体化过程中Al-Si镀层的组织演化。镀层板升温过程中,Al-Si镀层在570℃左右熔化;由于温度较低,Al、Fe、Si原子的扩散受到Fe_(2) SiAl_(7)阻挡。当温度升到610℃左右时,扩散到镀层的Al原子增多,使得Fe_(2)Al_(5)进一步生长;Si原子向基体和镀层外表面扩散,由于Fe_(2)Al_(5)溶解Si原子能力弱,因此在Fe_(2)Al_(5)晶界处形成一层沉淀物FeSiAl_(2),其余的Si原子就扩散在镀层表面形成Fe_(2) SiAl_(7)。750℃时,Al原子扩散到基体中形成了Fe_(3)Al;镀层中的Fe原子增加使Fe_(2)Al_(5)和FeAl_(2)不断生长;由于Fe_(2)Al_(5)和FeAl_(2)相中Si原子的溶解度低,因此会在晶界处形成Fe_(3) SiAl_(5)沉淀物;与Fe_(2)Al_(5)、Fe_(3) SiAl_(5)、Fe_(3)Al相比,FeAl_(2)相的生长速度更快,所占Al-Si镀层整体体积最大,这是因为FeAl_(2)正交晶格中沿c轴的高空位率(30%)导致了FeAl_(2)相的生长动力学更强。 Microstructure evolution of Al-Si coating during austenitization process on the 22MnB5 hot stamping steel was studied by means of differential scanning calorimeter,field emission electron probe and laser confocal microscope.The results show that during the heating process of the coated plate,the Al-Si coating melts at about 570℃.Due to the lower temperature,the diffusion of Al,Fe,and Si atoms is blocked by Fe_(2) SiAl_(7).When the temperature rises to about 610℃,the diffusion of Al atoms into the coating increases,which makes Fe_(2)Al_(5) further grow;Si atoms diffuse to the outer surface of the coating and the substrate.Because Fe_(2)Al_(5) has a weak ability to dissolve Si atoms,a layer is formed at the Fe_(2)Al_(5) grain boundary in which precipitate is FeSiAl_(2),and the remaining Si atoms diffuse on the surface of the coating to form Fe_(2) SiAl_(7).At 750℃,Al atoms diffuse into the matrix to form Fe_(3)Al;the increase of Fe atoms in the coating makes Fe_(2)Al_(5) and FeAl_(2) continue to grow;due to the lower solubility of Si atoms in the Fe_(2)Al_(5) and FeAl_(2) phases,Fe_(3) SiAl_(5) precipitates will form at the grain boundaries.Compared with Fe_(2)Al_(5),Fe_(3) SiAl_(5),Fe_(3)Al,the growth rate of FeAl_(2) phase is faster,and it occupies the largest volume of Al-Si coating.This is because of FeAl_(2) orthorhombic crystals,the high vacancy rate(30%)along the c-axis in the grid leads to stronger growth kinetics of the FeAl_(2) phase.
作者 王俊辉 崔青玲 曾林林 高欣宇 梁佳伟 Wang Junhui;Cui Qingling;Zeng Linlin;Gao Xinyu;Liang Jiawei(State Key Laboratory of Rolling and Automation,Northeastern University,Shenyang Liaoning 110819,China)
出处 《金属热处理》 CAS CSCD 北大核心 2021年第11期220-225,共6页 Heat Treatment of Metals
关键词 差示扫描量热仪 Al-Si镀层 金属间化合物 热冲压钢 differential scanning calorimeter Al-Si coating intermetallic compound hot stamping steel
  • 相关文献

参考文献4

二级参考文献33

  • 1WU ChenWu, HUANG ChenGuang & CHEN GuangNan Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China.Interface delamination of the thermal barrier coating subjected to local heating[J].Science China(Technological Sciences),2010,53(12):3168-3174. 被引量:7
  • 2Automotive Group of International Iron and Steel Institute. ULSAB-AVC engineering report[R]. Porsche Engineering Services, 2001.
  • 3FAN D W, KIM H S, BIROSCA S, et at. Critical review of hot stamping technology for automotive steels[C]// Materials Science and Technology Conference, Detroit, 2007.
  • 4BREGMAN G, OLDENBURG M. A finite element model for thermomechanical analysis of sheet metal forming[J]. International Journal for Numerical Methods in Engineering, 2004, 59: 1167-1186.
  • 5ERIKSSON M, OLDENBURG M, SOMANI M C, et al. Testing and evaluation of material data for analysis of forming and hardening of boron steel components[J]. Modelling Simul. Mater. Sci. Eng., 2002, 10: 277-294.
  • 6NADERI M, DURRENBERGER L, MOLINARI A, et al. Constitutive relationships for 22MnB5 boron steel deformed isothermally at high temperatures[J]. Materials Science and Engineering A, 2008, 478: 130-139.
  • 7MA Ning, HU Ping, SHEN Guozhe, et al. Model and numerical simulation of hot forming[C]// International Symposium on Automotive Steel, ISAS conference proceedings, September, 2009, Dalian, China. Beijing: Metallurgical Industry Press, 2009: 362-367.
  • 8张宗华,刘书田,唐智亮.蜂窝夹芯圆柱结构轴向冲击的耐撞性研究[C]//2009.中国力学学会学术大会,郑州,中国,2009:0032081.003208.5.
  • 9MADDEVER W, GUINEHUT S. Use of Aluminum foam to increase crash box efficiency[R]. SAE 2005 World Congress & Exhibition Technical Papers, 2005-01-0704.
  • 10ZHANG Zonghua, LIU Shutian, TANG Zhiliang. Crashworthiness investigation of kagome honeycomb sandwich cylindrical column under axial crushing loads[J]. Thin-Walled Structures 2009, 48(1): 9-18.

共引文献243

同被引文献11

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部