期刊文献+

真实TGO界面形貌对热障涂层界面应力的影响 被引量:3

Effect of real TGO interface topography on interface stress of thermal barrier coatings
原文传递
导出
摘要 采用MSC.MARC有限元分析软件,以真实服役的某重型燃气轮机透平第一级动叶片表面热障涂层为研究对象,研究真实TGO界面形貌对热障涂层界面应力的影响。结果表明:在TC/TGO界面的TC层中,法向应力σ_(22)分布中的拉应力位于波谷区域,压应力位于波峰区域,而在BC/TGO界面的BC层中,σ_(22)应力分布与TC层相反;TC层与BC层的剪切应力σ_(12)分布规律相同,均是波谷左侧的应力方向为负,波谷右侧的应力方向为正。TGO界面的波峰和波谷处的法向应力σ_(22)值随TGO厚度的增大而增加;当TGO厚度不变时,BC/TGO界面振幅增大,TGO内和BC内的法向应力σ_(22)值也随之增大。 Effect of real thermally growth oxide(TGO)interface topography on interface stress of thermal barrier coatings on the surface of first-stage blade of a heavy-duty gas turbine was studied by using finite element analysis software MSC.MARC.The results show that in the top coat(TC)layer at the TC/TGO interface,the tensile stress in normal stressσ_(22) is located in the trough area,and the compressive stress is located in the peak area;while in the bond coat(BC)layer at the BC/TGO interface,theσ_(22) stress distribution is opposite to that of the TC layer.Theσ_(12) stress distribution of the BC layer is the same as that of the TC layer,the distribution of shear stressσ_(12) in the TC layer is that the stress direction on the left side of the trough is negative,and that on the right side is positive.The normal stressσ_(22) at the peak and trough in the TGO increases with the thickness increase of the TGO;and when the thickness of TGO is constant,with the increase of the amplitude of the BC/TGO interface,theσ_(22) stress in TGO and BC increases.
作者 郭蕙敏 李博 张立群 陶敬镭 黄委 裴修远 肖俊峰 南晴 Guo Huimin;Li Bo;Zhang Liqun;Tao Jinglei;Huang Wei;Pei Xiuyuan;Xiao Junfeng;Nan Qing(Huaneng Suzhou Cogeneration Co.,Ltd.,Suzhou Jiangsu 215129,China;Xi'an Thermal Power Research Institute Co.,Ltd.,Xi'an Shaanxi 710054,China)
出处 《金属热处理》 CAS CSCD 北大核心 2021年第11期232-235,共4页 Heat Treatment of Metals
基金 华能苏州热电厂科技项目(HNKJ20-G00)。
关键词 热障涂层 界面应力 热生长氧化物 有限元分析 thermal barrier coatings interface stress thermally growth oxide(TGO) finite element analysis
  • 相关文献

参考文献1

二级参考文献42

  • 1Padture N P, Gell M, Jordan E H. Thermal barrier coatings for gas-turbine engine applications. Science, 2002, 296: 280-284.
  • 2Mao W G, Dai C, Yang L, et al. Interfacial fracture characteristic and crack propagation of thermal barrier coatings under tensile conditions at elevated temperatures. Int J Fracture, 2008, 151: 107-120.
  • 3Evans A G, Mumm D R, Hutchinson J W, et al. Mechanisms controlling the durability of thermal barrier coatings. Prog Mater Sci, 2001, 46: 505-553.
  • 4Kamara A M, Davey K. A numerical and experimental investigation into residual stress in thermally sprayed coatings. Int J Solids Struct, 2007, 44: 8532-8555.
  • 5Zhou Y C, Mao W G, Yang L, et al. Modeling of residual stresses variation with thermal cycling in thermal barrier coatings. Mech Mater, 2006, 38: 1118-1127.
  • 6Bednarz P. Finite Element Simulation of Stress Evolution in Thermal Barrier Coating Systems. Dissertation for the Doctoral Degree. Jülich: Forschungszentrum Jèulich, 2007. 1-121.
  • 7Bialas M. Finite element analysis of stress distribution in thermal barrier coatings. Surf Coat Tech, 2008, 202: 6002-6010.
  • 8Busso E, Lin J, Sakurai S. A mechanistic study of oxidation-induced degradation in a plasma-sprayed thermal barrier coating system. Part II: Life prediction model. Acta Mater, 2001, 49: 1529-1536.
  • 9He M Y, Hutchinson J W, Evans A G. Simulation of stresses and delamination in a plasma-sprayed thermal barrier system upon thermal cycling. Mater Sci Eng A-Struct Mater Prop Microstruct Process, 2003, 345: 172-178.
  • 10Sun Y L, Li J G, Zhang W X, et al. Local stress evolution in thermal barrier coating system during isothermal growth of irregular oxide layer. Surf Coat Technol, 2013, 216: 237-250.

共引文献12

同被引文献26

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部