期刊文献+

A Construction of Sequentially Cohen-Macaulay Graphs 被引量:1

原文传递
导出
摘要 For every simple graph G,a class of multiple clique cluster-whiskered graphs G^(eπm)is introduced,and it is shown that all such graphs are vertex decomposable;thus,the independence simplicial complex Ind G^(eπm)is sequentially Cohen-Macaulay.The properties of the graphs G^(eπm)and G^(π)constructed by Cook and Nagel are studied,including the enumeration of facets of the complex Ind G^(π)and the calculation of Betti numbers of the cover ideal Ic(G^(eπm).We also prove that the complex△=IndH is strongly shellable and pure for either a Boolean graph H=Bn or the full clique-whiskered graph H=G^(W)of C,which is obtained by adding a whisker to each vertex of G.This implies that both the facet ideal I(△)and the cover ideal Ic(H)have linear quotients.
出处 《Algebra Colloquium》 SCIE CSCD 2021年第3期399-414,共16页 代数集刊(英文版)
基金 Supported by the Natural Science Foundation of Shanghai(No.19ZR1424100) the National Natural Science Foundation of China(No.11271250,11971338).
  • 相关文献

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部