摘要
对一个具有合作狩猎功能性反应的两种群随机捕食系统进行研究.应用Ito公式,并通过构造适当的Lyapunov函数,首先讨论了系统全局正解的存在性;其次,基于Chebyshev不等式,研究了系统解的随机最终有界性;然后,分析了解在时间平均意义下的矩有界性;最后,通过数值模拟验证了理论分析结果的正确性.
In this paper,we consider a stochastic two species predator-prey system with hunting cooperation functional response.Using the Ito’s formula,and by constructing the proper Lyapunov function,we first discuss the existence of the global positive solution of the system;Furthermore,base on Chebyshev inequality,we study the stochastically ultimate boundedness of solution;Then,we show that the average in time of the moment of the solution is bounded;Finally,we verify the correctness of the theoretical analysis results by numerical simulation.
作者
李超
史培林
LI Chao;SHI Pei-lin(College of Mathematics,Taiyuan University of Technology,Taiyuan 030024,China)
出处
《数学的实践与认识》
2021年第22期112-120,共9页
Mathematics in Practice and Theory
关键词
合作狩猎
随机捕食系统
全局正解
随机最终有界性
时间平均意义下的矩有界性
hunting cooperation
stochastic predator-prey system
global positive solution
stochastically ultimate boundedness
moment average in time