摘要
运用初等方法证明了:对于任意的正整数n,除去x=y=z外,丟番图方程(33n)^(x)+(544n)^(y)=(545n)^(z)无其它的正整数解,即当a=33,b=544,c=545时,Jesmanowicz猜想成立.
By elementary method,it is proved that for any positive integern,the Diophantine equation(33n)^(x)+(544n)^(y)=(545n)^(z) has no solutions in positive integer other than x=y=z=2.That is Jesmanowicz conjecture is true when a=33,b=544,c=545.
作者
华程
HUA Cheng(School of Mathematics and Physics,Taizhou University,Taizhou 225300,China)
出处
《数学的实践与认识》
2021年第22期308-312,共5页
Mathematics in Practice and Theory
基金
江苏省自然科学基金(BK20171318)
泰州学院教育改革研究课题(2018JGB05)。