摘要
在双向小波构造理论、二维四向小波理论及图像处理基础上,研究了二维四向小波基的稳定性与光滑性、二维四向小波基的变分问题与最小化、二维四向小波变分泛函冗余度及模糊图像恢复理论问题。采用有关二维四向小波的分解算法,从理论上对二维四向加细函数的图像进行分解,得到了二维四向小波基的变分问题产生的一种参数化的解,以及二维四向小波基下模糊的图像恢复的理论研究结果。
Based on bidirectional wavelet construction theory,two-dimensional four-way wavelet theory and image processing,the stability and smoothness of two-dimensional four-way wavelet basis,the variational problems and minimization of two-dimensional four-way wavelet basis,the redundancy of two-dimensional four-way wavelet variational functional and fuzzy image restoration theory are studied.In the process of the research,the image decomposition of the two-dimensional four-way additive function is studied theoretically by using the decomposition algorithm of the two-dimensional four-way wavelet,and a parameterized solution of the variational problem of the two-dimensional four-way wavelet basis and the theoretical research result of the fuzzy image restoration under the two-dimensional four-way wavelet basis are obtained.
作者
马瑞瑞
王刚
张静
Ma Ruirui;Wang Gang;Zhang Jing(School of Mathematical Sciences,Xinjiang Normal University,Urumqi 830054,China)
出处
《甘肃科学学报》
2021年第6期10-15,共6页
Journal of Gansu Sciences
基金
新疆师范大学优秀青年教师科研启动基金资助项目(XJNU202014)。
关键词
二维四向小波基
稳定性与光滑性
变分泛函
模糊图像恢复
Two-dimensional four-direction wavelet basis
Stability and smoothness
Variational functional
Fuzzy image recovery