摘要
针对二维奇异摄动问题的对流扩散方程,应用多尺度有限元法在分层网格上数值求解边界层现象.利用多尺度有限元的基函数承载微观摄动性态,在宏观尺度下仅用少量计算资源通过分层网格自适应地逼近边界层.数值模拟结果表明,该方法是有效的且能得到不依赖于摄动系数大小与稳定收敛的高精度结果.
As for a two-dimensional convection-diffusion equation in singularly perturbed problems,a multiscale finite element method based on graded grids is proposed for the boundary layers phenomena.The multiscale finite element basis functions are loaded with the microscopic perturbed behaviors,thus on a macroscopic scale with only a small amount of computational resources the method is capable of adaptively capturing the boundary layers by the graded grids.Numerical simulations show that the method is efficient,and high precision results with the properties of uniform convergence and numerical stability are fulfilled.
作者
孙美玲
刘雪
江山
SUN Meiling;LIU Xue;JIANG Shan(School of Science,Nantong University,Nantong 226019,China;Department of Mathematics,Nantong Vocational University,Nantong 226007,China)
出处
《扬州大学学报(自然科学版)》
CAS
北大核心
2021年第4期5-10,共6页
Journal of Yangzhou University:Natural Science Edition
基金
国家自然科学基金资助项目(11771224)
南通市基础科学研究指令性资助项目(JC2021123)
南通职业大学高等教育教改研究课题(2019-YB-02).
关键词
奇异摄动问题
多尺度有限元
分层网格
边界层现象
singularly perturbed problem
multiscale finite element
graded grid
boundary layers phenomena