期刊文献+

一种基于深度学习图像超分的环形靶标稳定检测方法 被引量:3

A Circular Target Stability Detection Method Based on Deep Learning Image Super-resolution
下载PDF
导出
摘要 为提高远距离、大倾角条件下环形靶标的识别率与定位精度,提出了一种基于深度学习图像超分的环形靶标稳定检测方法。通过真实图像与合成图像的混合数据集来构建多角度、多距离的图像空间集合,采用像素损失与感知损失来改进图像超分辨率模型的损失函数,从而实现图像的高分辨率重建,丰富靶标轮廓的图像细节,利用已训练好的图像超分模型重建图像,最后使用传统的检测算法识别与定位环形靶标。实验结果表明,环形靶标识别率可提高40%,靶标定位精度可提高8.47%。 In order to improve the recognition rate and location accuracy of circular targets under the conditions of long-distance and large deflection angle,a circular target stability detection method was proposed based on deep learning image super-resolution.The multi-angle and multi-distance image sets were constructed through a hybrid data set of real images and synthetic images,the pixel loss and perceptual loss were used to improve the loss function of image super-resolution model,so the super-resolution reconstruction of images might be realized and the image details of target contours might be enriched.By using the pretrained super-resolution model,the images were reconstructed.Finally,traditional detection algorithm was used to recognize and locate the circular targets.The experimental results show that the circular target recognition rate is increased by 40%,and the target location accuracy is increased by 8.47%.
作者 崔海华 徐振龙 杨亚鹏 孟亚云 王宝俊 CUI Haihua;XU Zhenlong;YANG Yapeng;MENG Yayun;WANG Baojun(College of Mechanical&Electrical Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing,211106;Manufacturing Engineering Department,AVIC Xi an Aircraft Industry Group Company Ltd.,Xi an,710089)
出处 《中国机械工程》 EI CAS CSCD 北大核心 2021年第23期2861-2867,共7页 China Mechanical Engineering
基金 国家重点研发计划(2019YFB2006100,2019YFB1707501) 江苏省自然科学基金(BK20191280) 南京航空航天大学研究生创新基地(实验室)开放基金(kfjj20200519)。
关键词 环形靶标 超分辨率 深度学习 目标识别 circular target super-resolution deep learning object recognition
  • 相关文献

参考文献5

二级参考文献32

  • 1张广军,贺俊吉,李秀智.一种新型的微小型构件内表面三维形貌检测系统[J].仪器仪表学报,2006,27(3):302-306. 被引量:8
  • 2Pratt W K.数字图像处理[M].邓鲁华,张延恒译.北京:机械工业出版社,2005:299-325.
  • 3Masahiko Hirao, Hirotsugu OgiAn. SH-wave EMAT technique for gas pipeline inspection [J]. NDT & E International, 1999, 32: 127-132.
  • 4Yang Mingder, Su Tungching. Automated diagnosis of sewer pipe defects based on machine learning approaches [J]. Expert Systems with Applications, 2008, 35:1327-1337.
  • 5Duran O, Althoefor K, Lakmald, et inspection: model, analysis and International Conference on Image al. A sensor for pipe image extraction [J]. Processing, 2003, 3:597-600.
  • 6Duran O, Althoefer K, Senevira Tne Lak Maid. Pipe inspection using a laser-based transducer and automated analysis techniques [J]. IEEE ASME Transactions on Mechalronics, 2003, 8(3): 401-409.
  • 7Zhang Z. A flexible new technique for camera calibration[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2000, 22(11): 1330-1334.
  • 8王曼,叶正麟,陈作平,王树勋.基于数学形态学的编码标志点识别算法[J].计算机工程与应用,2007,43(36):94-96. 被引量:11
  • 9Wu J P, Li J X, Xiao C S, et al. Real-time robust algo- rithm for circle object detection [C]//The 9th Internation al Conference for Young Computer Scientists, 2008: 1722- 1727.
  • 10Tri C P, Yong S I, Ja C K, et al. An enhanced edge tracking method using a low resolution tactile sensor[J]. International Journal of Control, Automation, and Sys- tems, 2010, 8(2):462- 467.

共引文献240

同被引文献26

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部