期刊文献+

基于机器学习和器件模拟对Cu(In,Ga)Se_(2)电池中Ga含量梯度的优化分析

Optimization of Ga content gradient in Cu(In,Ga)Se_(2) solar cells through machine learning and device simulation
下载PDF
导出
摘要 Cu(In,Ga)Se_(2)(CIGS)太阳能电池是一种高效薄膜太阳能电池,Ga含量(Ga/(Ga+In),GGI)梯度调控是在不损失短路电流情况下,获得高开路电压的一种有效方法.本文基于对薄膜电池效率极限的对比分析,首先评估了CIGS电池性能提升的优化空间和策略.进而,通过机器学习与电池模拟分析相结合,研究了不同类别的“V”型GGI梯度对电池性能的影响,优化了“V”型双梯度的分布,获得了高于26%的模拟效率,并探究了其内部载流子作用机理.本文的研究提供了获得高效率CIGS电池“V”型GGI梯度的优化方案,为实验优化提供了指导. Cu(In,Ga)Se_(2)(CIGS)solar cell is a kind of highly efficient thin film solar cell,for which Ga ratio(Ga/(Ga+In),GGI)gradient engineering is an efficient approach to achieving high open circuit voltage under no short circuit current loss.In this work,we firstly evaluate the room and the strategies for improving the device performance of the CIGS solar cells based on the comparison among their theoretical efficiency limits.Then we investigate the different schemes of“V”type GGI gradient and their effects on device performance through machine learning and device simulation.Based on these studies,we optimize the scheme of“V”type GGI gradient and obtain a high efficiency of 26%from device simulation.The carrier kinetics for the effect of modifying GGI gradient on device performance are analyzed.This work provides an approach to optimizing the GGI gradient to obtain highly efficient CIGS solar cells,which is referable for experimental optimization.
作者 刘武 朱成皖 李昊天 赵谡玲 乔泊 徐征 宋丹丹 Liu Wu;Zhu Cheng-Wan;Li Hao-Tian;Zhao Su-Ling;Qiao Bo;Xu Zheng;Song Dan-Dan(Key Laboratory of Luminescence and Optical Information,Ministry of Education,Beijing Jiaotong University,Beijing 100044,China;Institute of Optoelectronics Technology,Beijing Jiaotong University,Beijing 100044,China)
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2021年第23期388-396,共9页 Acta Physica Sinica
基金 国家重点研发计划(批准号:2018YFB1500200)资助的课题.
关键词 Cu(In Ga)Se_(2)太阳能电池 Ga梯度 效率极限 机器学习 器件模拟 Cu(In,Ga)Se_(2)solar cells Ga gradient efficiency limit machine learning device simulation
  • 相关文献

参考文献1

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部