期刊文献+

出租车轨迹数据的频繁轨迹识别 被引量:3

Frequent trajectory recognition of taxi trajectory data
下载PDF
导出
摘要 为识别城市交通中的频繁路径,本文提出了一种出租车轨迹数据的频繁轨迹识别方法。该方法首先对轨迹数据进行轨迹压缩,以降低计算复杂度;然后基于最长公共子序列和动态时间规整算法进行轨迹相似性度量计算,利用计算得到的轨迹间相似度生成距离矩阵;最后将生成的距离矩阵结合HDBSCAN算法进行聚类得到频繁轨迹。选取厦门岛内两个区域进行试验分析,结果表明,该方法能够识别出轨迹数据集中的频繁轨迹,进而得到城市区域之间通行的频繁路径,对道路规划、路径优化与推荐、交通治理等应用提供帮助。 In order to identify the frequent paths in urban traffic,this paper proposes a method of frequent trajectory identification for taxi trajectory data.The method firstly compresses the trajectory data to reduce the computational complexity.Then calculates the trajectory similarity measure based on longest common subsequence and dynamic time warping algorithm,and generates a distance matrix by using the calculated similarity between trajectories.Finally,the generated distance matrix is clustered with HDBSCAN algorithm to get frequent trajectories.Two areas in Xiamen Island are selected for experimental analysis.The results show that the proposed method can identify the frequent trajectories in the trajectory data set and obtain the frequent paths between urban areas,which is helpful for road planning,path optimization and recommendation,traffic management and other applications.
作者 邬群勇 王祥健 WU Qunyong;WANG Xiangjian(Key Lab of Spatial Data Mining and Information Sharing of Ministry of Education,Fuzhou University,Fuzhou 350108,China;The Academy of Digital China(Fujian),Fuzhou 350003,China;National&Local Joint Engineering Research Center of Satellite Geospatial Information Technology,Fuzhou 350108,China)
出处 《测绘通报》 CSCD 北大核心 2021年第11期70-75,共6页 Bulletin of Surveying and Mapping
基金 国家自然科学基金(41471333) 中央引导地方科技发展专项(2017L3012)。
关键词 轨迹数据 轨迹压缩 轨迹相似度 聚类簇 频繁轨迹 trajectory data trajectory compression trajectory similarity clustering group frequent trajectory
  • 相关文献

参考文献3

二级参考文献54

  • 1王家耀,魏海平,成毅,熊自明.时空GIS的研究与进展[J].海洋测绘,2004,24(5):1-4. 被引量:67
  • 2郭庆胜,刘小利,陈宇箭.线与线之间的空间拓扑关系组合推理[J].武汉大学学报(信息科学版),2006,31(1):39-42. 被引量:12
  • 3潘云鹤,王金龙,徐从富.数据流频繁模式挖掘研究进展[J].自动化学报,2006,32(4):594-602. 被引量:34
  • 4高勇,张晶,朱晓禧,刘瑜.移动对象时空拓扑关系模型[J].北京大学学报(自然科学版),2007,43(4):468-473. 被引量:14
  • 5Zheng V W, Zheng Y, Xie X, et al. Towards Mo- bile Intelligence: Learning from GPS History for Collaborative Recommendation [J]. Artificial In- telligence, 2012, 184(1): 17-37.
  • 6Yuan J, Zheng Y, Xie X, et al. T-drive: Enhancing Driving Directions with Taxi Drivers' Intelligence [J]. Data & Knowledge Engineering, 2013, 25 (1) : 220-232.
  • 7Castro P S, Zhang D, I.i S. Urban Traffic Model- ing and Prediction Using Large Scale Taxi GPS Traces[C]. The 10th International Conference of Pervasive Computation, Newcastle, 2012.
  • 8Kaltenbrunner A, Meza R, Grivolla J, et al. Urban Cycles and Mobility Patterns.. Exploring and Predic ting Trends in a Bicycle-based Public Transport Sys- tem[J]. Pervasive and Mobile Computing (Natural Science), 2010, 6(4): 455-466.
  • 9Li Z, Han J, Ji M, et al. MoveMine.. Mining Mov- ing Object Data for Discovery of Animal Movement Patterns[J]. ACM Transactions on Intelligent Sys- tems and Technology, 2011, 2(4): 111-146.
  • 10Hadjielefthriou M, Kollios G, Bakalov P, et al.Complex Spatio-temporal Pattern Queries[C]. The 31st VLDB Conference, Trondheim, 2005.

共引文献38

同被引文献33

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部