期刊文献+

基于多传感融合的自主发育网络场景识别方法 被引量:3

A Scene Recognition Method of Autonomous Developmental Network Based on Multi-sensor Fusion
原文传递
导出
摘要 现有的场景识别方法准确率低,适应能力不强.为此,将自主发育神经网络应用于机器人场景识别任务,提出了2种将自主发育网络与多传感器融合技术相结合的场景识别方法,即基于加权贝叶斯融合的机器人场景识别方法,以及基于同一自主发育网络架构数据融合的场景识别方法,分别在决策层以及数据层对多传感器信息进行融合,提高了场景识别的准确度,而自主发育网络则提升了识别方法针对各种复杂场景的适应能力.对于所提出的场景识别方法进行了实验测试与分析,证实了其有效性及实用性.此外,由于在同一网络架构下进行数据融合可更高效地利用数据,因此这种方法在场景识别的准确度方面具有更为优越的性能. Considering the low accuracy and poor adaptability of the existing scene recognition methods,the autonomous developmental neural network is applied to the robot scene recognition task,and two scene recognition methods combining the autonomous developmental network and multi-sensor fusion are proposed,namely,the robot scene recognition method based on weighted Bayesian fusion,and the scene recognition method based on data fusion of the same autonomous developmental network architecture,where the multi-sensor information is fused in the decision-making layer and the data layer,respectively,so as to improve the accuracy of scene recognition.Meanwhile,the autonomous developmental network improves the adaptability of the recognition method for various complex scenes.The proposed scene recognition method is tested and analyzed,which proves its effectiveness and practicability.In addition,the proposed method achieves better accuracy in scene recognition due to more efficient use of collected data through data fusion in the same network architecture.
作者 余慧瑾 方勇纯 韦知辛 YU Huijin;FANG Yongchun;WEI Zhixin(Institute of Robotics and Automatic Information System,College of Artificial Intelligence,Nankai University,Tianjin 300071,China;Tianjin Key Laboratory of Intelligent Robotics,Nankai University,Tianjin 300071,China)
出处 《机器人》 EI CSCD 北大核心 2021年第6期706-714,共9页 Robot
基金 国家重点研发计划(2018YFB1309000).
关键词 自主发育神经网络 多传感器融合 场景识别 autonomous developmental neural network multi-sensor fusion scene recognition
  • 相关文献

参考文献3

二级参考文献33

  • 1刘昊,方雯逸.基于BP神经网络的人脸朝向分类的新思路[J].计算机科学,2012,39(S3):366-368. 被引量:2
  • 2李桂芝,安成万,杨国胜,谭民,涂序彦.基于场景识别的移动机器人定位方法研究[J].机器人,2005,27(2):123-127. 被引量:20
  • 3高颖,陈东岳,张立明.一种带有实时视觉特征学习的自主发育机器人探索[J].复旦学报(自然科学版),2005,44(6):964-970. 被引量:6
  • 4陈锐,李辉,侯义斌,黄樟钦.由人脸朝向驱动的多方向投影交互系统[J].小型微型计算机系统,2007,28(4):706-709. 被引量:7
  • 5Albus J S.A model of computation and representation in the brain[J].Information Sciences,2010,180(9):1519-1554.
  • 6George D,Hawkins J.Towards a mathematical theory of cortical micro-circuits[J].PLoS Computational Biology,2009,5(10):1-26.
  • 7Tenenbaum J B,Griffiths T L,Kemp C.Theory-based Bayesian models of inductive learning and reasoning[J].Trends in Cognitive Sciences,2006,10(7):309-318.
  • 8Weng J.Three theorems:Brain-like networks logically reason and optimally generalize[C]//Proceeding of International Joint Conference on Neural Networks.Piscataway,USA:IEEE,2011:2983-2990.
  • 9Cox B R,Krichmar J L.Neuromodulation as a robot controller:A brain-inspired strategy for controlling autonomous robots[J].IEEE Robotics and Automation Magazine,2009,16(3):72-80.
  • 10Almassy N,Edelman G M,Sporns O.Behavioral constraints in the development of neuronal properties:A cortical model embedded in a real-world device[J].Cerebral Cortex,1998,8(4):346-361.

共引文献12

同被引文献20

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部