期刊文献+

机动车油耗模型研究综述 被引量:1

Survey of Fuel Consumption Model for Motor Vehicle
下载PDF
导出
摘要 随着交通运输业的蓬勃发展,机动车保有量急剧增长,从而导致燃油过度消耗与排放,引发了能源短缺与环境污染等问题。国内外学者致力于机动车燃油消耗模型的研究,旨在提高模型的准确率,降低车辆的燃油消耗,响应可持续发展战略。对此,依据不同的视角,将机动车的燃油消耗模型分为基于汽车动力学原理的传统油耗模型和基于机器学习方法的数据驱动油耗模型两大类。将这两大类的燃油消耗模型又分为各小类分别进行介绍,内容包含各类模型的发展历程、优缺点与对比分析,并对各类模型的应用现状进行概述,对未来应用发展方向进行探讨。最后对机动车的燃油消耗模型进行总结与展望。 With the vigorous development of the transportation industry,the number of motor vehicles has increased sharply,which has led to excessive fuel consumption and emissions,and causes problems such as energy shortages and environmental pollution.Scholars at home and abroad are committed to the research of vehicle fuel consumption model,which aims to improve the accuracy of the model,reduce the fuel consumption of vehicles,and respond to the strategy of sustainable development.In this regard,according to different perspectives,the fuel emission models of motor vehicles are divided into two categories:the traditional fuel consumption model based on vehicle dynamics and the data driven fuel consumption model based on machine learning method.The two types of fuel consumption models are divided into vari-ous categories and introduced separately.The content includes the development process,advantages and disadvantages of various fuel consumption models and comparative analysis of various models,and an overview of the application status of various models,and future exploration of the application development direction.Finally,the fuel consumption model of motor vehicle is summarized and prospected.
作者 张隅希 段宗涛 朱依水 王路阳 周祎 郭宇 ZHANG Yuxi;DUAN Zongtao;ZHU Yishui;WANG Luyang;ZHOU Yi;GUO Yu(School of Information Engineering,Chang’an University,Xi’an 710064,China)
出处 《计算机工程与应用》 CSCD 北大核心 2021年第24期14-26,共13页 Computer Engineering and Applications
基金 中央高校项目(CHD300102249310) 陕西省科技厅项目(2020GY013) 陕西省重点研发计划项目(2019ZDLGY17-08,2019ZDLGY03-09-01,2020ZDLGY09-02) 陕西省特支计划科技创新领军人才项目(TZ0336)。
关键词 机动车 燃油消耗模型 机器学习 数据驱动 混合式模型 motor vehicle fuel consumption model machine learning data-driven hybrid model
  • 相关文献

参考文献22

二级参考文献270

共引文献532

同被引文献12

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部