期刊文献+

考虑电池损耗的电动冷藏车路径及充电策略 被引量:1

Research on Path Optimization and Charging Strategy of Electric Refrigerated Vehicle Considering Cost of Battery Capacity Degradation
下载PDF
导出
摘要 电池充电造成的电池损耗对企业运营成本影响较大,以不同SOC区间内一次充电造成的电池容量衰退成本模型估计电池损耗成本,研究了车辆途中可多次进入充电站充电的路径优化问题,在考虑运输成本、制冷成本、货损成本、充电时间成本、惩罚成本的基础上,将电动冷藏车的电池损耗成本纳入总成本最小的目标函数,并建立了线性规划数学模型。采用增加粒子间共享信息类型的改进粒子群算法对该模型进行求解。将改进粒子群算法应用于构造的算例中,得到包括充电策略在内的车辆最优路径方案和最小运营成本,结果表明充电上限为80%的车辆路径方案可得到最低的运营成本,同时与标准粒子群算法求得的计算结果进行了比较分析,证明该改进粒子群算法在求解该问题上的可行性。 The battery capacity degradation caused by charging has a great influence on the operating cost of enterprises.The cost model of battery capacity degradation caused by a single charge under different SOC range is developed to esti-mate the cost of battery degradation.The path optimization problem that the vehicle can charge many times.On the basis of considering transportation costs,refrigeration costs,cargo damage costs,charging time costs and penalty costs,the bat-tery loss cost of electric refrigerated vehicle is incorporated into the objective function of minimizing total cost,and a lin-ear programming mathematical model is established.Secondly,an improved Particle Swarm Optimization(PSO)algo-rithm by increasing the type of information shared between particles is used to solve the model.Finally,improved PSO algorithm is applied to an example to obtain the vehicle routing scheme including charging strategy and the minimum operating cost,the results show the vehicle routing program when the charging limit is 80%can achieve the lowest operat-ing costs,and the results are compared with those obtained by the standard PSO algorithm,which proves the feasibility of the improved PSO algorithm in solving this problem.
作者 王嘉月 史立 WANG Jiayue;SHI Li(Institute of Logistics Science&Engineering,Shanghai Maritime University,Shanghai 201306,China)
出处 《计算机工程与应用》 CSCD 北大核心 2021年第24期283-289,共7页 Computer Engineering and Applications
基金 国家自然科学基金面上项目(71871136)。
关键词 电动冷藏车 充电策略 路径优化 改进粒子群算法 electric refrigerated vehicle charging strategy path optimization improved Particle Swarm Optimization(PSO)algorithm
  • 相关文献

参考文献7

二级参考文献71

共引文献185

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部