期刊文献+

基于3-D Gabor纹理特征和GBDT分类器的高光谱分类方法 被引量:1

A hyperspectral classification method based on 3-D Gabor texture feature and GBDT classifier
下载PDF
导出
摘要 为了有效提取高光谱图像的空间和光谱维特征,获得准确率和分类效率俱佳的方法,利用52个不同方向和频率的3-D Gabor滤波器提取图像的纹理特征,结合梯度优化决策树分类器(GBDT)完成高光谱图像分类。结果表明3-D Gabor+GBDT方法的分类准确率高于CNN算法、Gabor以及EMAP为纹理特征的方法,且高于CNN和以SVM为分类器的方法。虽然3-D Gabor+GBDT建模训练时间长,但是该方法在保持高准确率的前提下,分类效率依然较高,适合大规模高光谱图像的在线分类场景。 In order to extract spatial and spectral dimension features of hyperspectral images effectively,and obtain a method with good accuracy and classification efficiency,523-D Gabor filters with different directions and frequencies are used to extract texture features of images,and the gradient optimization decision tree classifier(GBDT)is used to complete the classification of hyperspectral images.The results show that the classification accuracy of 3-D Gabor+GBDT method is higher than that of CNN algorithm,Gabor and EMAP method as texture feature,and higher than that of CNN and SVM method as classifier.Although the modeling training of 3-D Gabor+GBDT takes a long training time,the classification efficiency of this method is still high on the premise of maintaining high accuracy,which is suitable for large-scale hyperspectral image online classification scenes.
作者 杨志超 赵森 YANG Zhichao;ZHAO Sen(Department of Forensic Science, Zhejiang Police College, Hangzhou 310053, China;Key Laboratory of Ministry of Public Security Information Application Based on Big-data Architecture, Hangzhou 310053, China)
出处 《成都理工大学学报(自然科学版)》 CAS CSCD 北大核心 2021年第6期747-753,共7页 Journal of Chengdu University of Technology: Science & Technology Edition
基金 国家重点研发计划项目(2018YFC0807401) 浙江省教育厅科研项目(Y201737880) 浙江警察学院项目(2020XJY015)。
关键词 高光谱遥感 图像分类 3-D Gabor滤波器 hyperspectral remote sensing image classification 3-D Gabor filter
  • 相关文献

参考文献4

二级参考文献27

  • 1童庆禧,张兵,郑兰芳.Hyperspectral Remote Sensing(高光谱遥感).Beijing:Higher Education Press(北京:高等教育出版社),2006.
  • 2Du Q, Yang H. IEEE Geoscience and Remote Sensing Letters, 2008, 5(4): 564.
  • 3Martinez-Uso A, Pla F, Sotoca J M, et al. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(12): 4158.
  • 4Gu Y F, Zhang Y. Proceedings of International Conference on Image Processing, 2003, 1: 801.
  • 5Sarkar S, Healey G. Optical Engineering, 2004, 43(12): 3038.
  • 6Chen M, Strobl J. International Journal of Remote Sensing, 2013, 34(13): 4550.
  • 7Shi M, Healey G. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(5): 1201.
  • 8Hauta-Kasari M, Parkkinen J, Jaaskelainen T, et al. Proceedings of the 13th International Conference on Pattern Recognition, 1996, 2(3): 785.
  • 9Licciardi G, Pacifici F, Tuia D, et al. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(11): 3857.
  • 10Daugman J G. Journal of the Optical Society of America A, 1985, 2(7): 1160.

共引文献40

同被引文献19

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部