期刊文献+

随机多孔介质内流体流动传热特性研究 被引量:2

Study on Flow and Heat Transfer Characteristics of Fluid in Random Porous Media
下载PDF
导出
摘要 多孔介质内部复杂的孔隙结构导致多孔介质内流体流动的随机性。本文通过数值实验的方法对随机多孔介质内流体流动传热特性进行了研究,结果表明:随着压差的增大,多孔介质内部流体流速呈线性单增的关系;随着孔隙率的增加,温度整体分布呈现出不均匀性的特点,其内部页岩气的平均流动速度加快,平均温度逐渐增加。研究结果对多孔介质内部流体流动特性的认识具有一定的借鉴意义。 The complex pore structure in porous media leads to the randomness of fluid flow in porous media.Numerical experiments were used to study the heat transfer characteristics of fluid flow in random porous media.The results showed that:as the pressure difference increases,the fluid flow rate inside the porous media increased linearly,as the porosity increases,the overall temperature distribution presented the characteristics of inhomogeneity,the average flow rate of shale gas inside the gas increased,and the average temperature gradually increased.The research results had certain reference significance for the understanding of fluid flow characteristics in porous media.
作者 李景明 牛环宁 刘书城 韩桔 LI Jing-ming;NIU Huan-ning;LIU Shu-cheng;HAN Ju(School of Mechanical Engineering,Xi'an Shiyou University,Shaanxi Xi'an 710065,China)
出处 《广州化工》 CAS 2021年第23期54-56,共3页 GuangZhou Chemical Industry
关键词 随机多孔介质 流动传热 压差 孔隙率 random porous media flow heat transfer pressure difference porosity
  • 相关文献

参考文献2

二级参考文献14

  • 1Von Rosenberg D U. Mechanics of steady state single-phase fluid displacement from porous media [J]. AIChE Journal, 1956, 2(1): 55-58.
  • 2Chen Y P, Shen C Q, Lu P F, et al. Role of pore structure on liquid flow behaviors in porous media characterized by fractal geometry [J]. Chemical Engineering and Processing: Process Intensification, 2015, 87: 75-80.
  • 3Genty A, Pot V. Numerical calculation of effective diffusion in unsaturated porous media by the TRT Lattice Boltzmann Method [J]. Transport in porous media, 2014, 105(2): 391-410.
  • 4Lemaitre R, Adler P M. Fractal porous media IV: three-dimensional stokes flow through random media and regular fractals[J]. Tra -nsport in porous media, 1990, 5: 325-340.
  • 5Darcy H. Les Fontaines Publiques de la Ville de Dijon [M]. Paris: Victor Dalmont, 1856.
  • 6Tasnim S H, Mahmud S, Fraser R A. Brinkman Forchheimer mod -eling for porous media thermoacoustie system [J]. International Journal of Heat and Mass Transfer, 2011, 54(17-18): 3811-3821.
  • 7Henderson N, Brettas J C, Sacco W F. A three-parameter Kozeny- Cayman generalized equation for fractal porous media [J]. Chem. Eng. Sci, 2010, 65: 4432-4442.
  • 8Kikkinides E S, Burganos V N. Structural and flow properties of binary media generated by fractional Brownian motion models [J]. Physical Review E, 1999, 59(6): 7185-7194.
  • 9Tu rk C, Carbone A, Chiaia B M. Fractal heterogeneous media [J]. Physical Review E, 2010, 81, 026706.
  • 10Othman M R, Helwani Z, Martunus. Simulated fractal permeabili- ty for porous membranes [J]. Applied Mathematical Modeling, 2010, 34: 2452-2464.

共引文献9

同被引文献20

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部