期刊文献+

含氮官能团种类对活性碳纤维吸附催化SO_(2)的影响 被引量:2

Effects of the types of nitrogen-containing functional groups on the adsorption and catalytic of SO_(2) by activated carbon fibers
下载PDF
导出
摘要 活性碳纤维(ACF)可用于低温吸附催化脱除燃煤烟气中的SO_(2),大量实验证明对ACF表面进行掺氮改性可显著提高其脱硫率,但理论研究相对较少,且不同种类含氮官能团对脱硫的影响仍未有定论.为此,采用密度泛函理论(DFT)和波函数分析对不同种类含氮官能团修饰的ACF的表面结构、静电相互作用、极化和分子轨道进行了对比研究.结果表明氮修饰不仅有利于增强ACF与吸附质分子SO_(2)间的静电相互作用,其催化氧化和感应SO_(2)分子的能力也有所提高.其中,石墨化氮掺杂的ACF的极性指数相较掺杂前提高了71.33%,性能改善最为显著,作为SO_(2)分子的选择性传感器和吸附催化剂颇具潜力. Activated carbon fiber(ACF)can be used for low-temperature adsorption and catalytic removal of SO_(2)in coal-fired flue gas.A large number of experiments have proved that the surface modification of ACF can significantly improve its desulfurization rate,but there are relatively few theoretical studies and the effect of different types of nitrogen functional groups on desulfurization is still inconclusive.To this end,density functional theory(DFT)and wavefunction analysis were used to compare the surface structures,electrostatic interactions,polarizations and molecular orbitals of different types of ACF modified with nitrogen-containing functional groups.The results show that nitrogen modification not only helps to enhance the electrostatic interaction between ACF and adsorbate molecules SO_(2),but also improves its ability to catalyze oxidation and sense SO_(2)molecules.Among them,the performance improvement of graphitic nitrogen-doped ACF is the most significant,its polarity index of graphitic nitrogen-doped ACF is increased by 71.33%compared with that before doping,and has great potential as a selective sensor and adsorption catalyst for SO_(2)molecules.
作者 余琦 刘伟军 田中训 纪玮 YU Qi;LIU Wei-Jun;TIAN Zhong-Xun;JI Wei(School of Mechanical and Automotive Engineering,Shanghai University of Engineering Science,Shanghai 201620,China)
出处 《原子与分子物理学报》 CAS 北大核心 2022年第1期43-49,共7页 Journal of Atomic and Molecular Physics
基金 上海工程技术大学研究生科研创新项目(19KY0139)。
关键词 含氮官能团 吸附 催化 石墨化氮 DFT 波函数 N-containing functional groups Adsorption Catalysisy Graphitic-N DFT Wavefunction
  • 相关文献

参考文献3

二级参考文献43

  • 1Wu, G.; Zelenay, P. Accounts Chem. Res. 2013, 46, 1878. doi: 10.1021/ar400011z.
  • 2Zhang Z. H.; Liu, J.; Gu, J. J.; Su, L.; Cheng, L. F. Energy Environ. Sci. 2014, 7, 2535. doi: 10.1039/c3ee43886d.
  • 3Shao, Y. Y.; Sui J. H.; Yin, G. P.; Gao, Y. Z. Appl. Catal. B-Environ. 2008, 79, 89. doi:10.1016/j.apcatb.2007.09.047.
  • 4Huo, R. J.; Jiang, W. J.; Xu, S. L.; Zhang, F. Z.; Hu, J. S. Nanoscale 2014, 6, 203. doi: 10.1039/c3nr05352k.
  • 5Ferreira, P. J.; la O′, G. J.; Shao-Horn, Y.; Morgan, D.; Makharia, R.; Kocha, S.; Gasteiger, H. A. J. Electrochem. Soc. 2005, 152, A2256. doi: 10.1149/1.2050347.
  • 6Lai, L. F.; Potts, J. R.; Zhan, D.; Wang, L.; Poh, C. K.; Tang, C.; Gong, H.; Shen, Z. X.; Lin, J. Y.; Ruoff, R. S. Energy Environ. Sci. 2012, 5, 7936. doi: 10.1039/c2ee21802j.
  • 7Zhang, C. Z.; Mahmood, N.; Yin, H.; Liu, F.; Hou, Y. L. Adv. Mater. 2013, 25, 4932. doi: 10.1002/adma.201301870.
  • 8Zhang, L. P.; Niu, J. B.; Li, M. T.; Xia, Z. H. J. Phys. Chem. C 2014, 118, 3545. doi: 10.1021/jp410501u.
  • 9Zhu, C. Z.; Dong, S. J. Nanoscale 2013, 5, 1753. doi: 10.1039/c2nr33839d.
  • 10Liu, Q.; Zhang, H. Y.; Zhong, H. W.; Zhang, S. M.; Chen, S. L. Electrochim. Acta 2012, 81, 313. doi: 10.1016/j.electacta.2012.07.022.

共引文献24

同被引文献10

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部